• 제목/요약/키워드: Multi-flow cascade

검색결과 17건 처리시간 0.032초

Restoration of the isotopic composition of reprocessed uranium hexafluoride using cascade with additional product

  • Palkin, Valerii;Maslyukov, Eugenii
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2867-2873
    • /
    • 2020
  • In reprocessed uranium, derived from an impoverished fuel of light-water moderated reactors, there are isotopes of 232, 234, 236U, which make its recycling remarkably difficult. A method of concentration of 235U target isotope in cascade's additional product was proposed to recover the isotopic composition of reprocessed uranium. A general calculation procedure is presented and a parameters' optimization of multi-flow cascades with additional products. For the first time a numeric model of a cascade that uses the cuts of partial flows of stages with relatively high separation factors was applied in this procedure. A novel computing experiment is carried out on separation of reprocessed uranium hexafluoride with providing a high concentration of 235U in cascade's additional product with subsequent dilution. The parameters of cascades' stages are determined so as to allow reducing the 232, 234, 236U isotope content up to the acceptable. It was demonstrated that the dilution of selected products by the natural waste makes it possible to receive a low enriched uranium hexafluoride that meets the ASTM C996-15 specification for commercial grade.

케스케이드 실험을 위한 벽면형상 설계에 관한 연구 (A Study of Wall Shape Design for Cascade Experiment)

  • 조종현;조봉수;김재실;조수용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.148-151
    • /
    • 2008
  • In a double-passage cascade apparatus, only two blades are installed in order to increase the accuracy of experimental result by applying bigger blade than the size of multi-blades on the same apparatus. However, this causes difficulties to make correct periodic condition. In this study, sidewalls are designed to meet periodic condition without removing the operating fluid or adjusting tail boards. Surface Mach number on the blade surface is applied to a responsible variable, and 12 design variables which are related with sidewall profile control are selected. A gradient based optimization is adopted for wall design and CFX-11 is used for the internal flow computation. The computed result shows that it could obtain the same flow structure by modifying only the sidewalls of the double-passage cascade apparatus.

  • PDF

축류터빈 내부의 3차원 압축성 점성 유동특성에 관한 수치 시뮬레이션 (Numerical Simulation of Three-Dimensional Compressible Viscous Flow Characteristics in Axial-Flow Turbines)

  • 정희택;정향남
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.42-48
    • /
    • 2004
  • Numerical simulation of viscous compressible flow in turbomachinery cascade involves many problems due to the complex geometry of blade but also flow phenomena. In the present study, numerical investigations have been performed to examine the three-dimensional flow characteristics inside the transonic linear turbine cascades using a commercial code, FLUENT. Multi-block H-type grids are applied to the high-turning turbine rotor blades and comparisons with the experimental data and the numerical results have been done. In addition, the effects of turbulence models on the prediction of the endwall flows are analyzed in the sense of the flow compressibility.

  • PDF

점성 및 충격파효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석 (Flow-induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects)

  • 오세원;박웅;김동현
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.937-948
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

점성 및 충격파 효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석 (Flow-Induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects)

  • 오세원;김동현;박웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.793-802
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

  • PDF

160% 피치의 유로에서 단일익형에 의한 캐스케이드 실험을 위한 벽면의 설계에 관한 연구 (A Study of Design of Sidewalls for Cascade Model with Single Blade Within a 160% Pitch Passage)

  • 조종현;김영철;안국영;조수용
    • 한국항공우주학회지
    • /
    • 제37권6호
    • /
    • pp.527-536
    • /
    • 2009
  • 캐스케이드 실험장치에 한 개의 익형을 설치하여 캐스케이드 실험이 가능한 장치벽면의 설계를 수행하였다. 장치의 폭은 피치의 160% 넓이이다. 이 경우에 실험장치 내에 다수개의 블레이드를 설치하는 경우에 비하여 소형의 장치라도 실험의 정확성이 향상되는 장점이 있지만, 피치방향으로 주기조건을 맞추기가 어렵다. 본 연구에서는 주기조건이 얻어지도록 벽면의 형상설계를 내부유동장의 결과를 바탕으로 기울기기반과 유전자알고리즘의 방식을 사용하여 벽면을 설계하였다. 이를 위하여 목적함수는 캐스케이드 익형의 표면에서 얻어진 마하수를 적용하였으며, 실험장치의 형상 조정이 가능한 14개의 설계변수를 적용하였다. 유전자알고리즘에 의한 최적화 설계방식이 향상된 결과를 보여주었다.

다익송풍기 내부 3차원 정상유동의 수치해석 (Analysis of the three-dimensional Steady Flow through A Multi-blade Centrifugal Fan)

  • 서성진;첸시;김광용;강신형
    • 한국유체기계학회 논문집
    • /
    • 제3권1호
    • /
    • pp.19-27
    • /
    • 2000
  • A numerical study is presented for analysis of three-dimensional incompressible turbulent flows in a multi-blade centrifugal fan. Reynolds-averaged Navier-Stokes equations with a standard $k-{\espilon}$ turbulence model are discretized with finite volume approximations. The computational area is divided into three blocks; inlet core, impeller and scroll parts, which are linked by a multi-block method. The flow inside of the fan is regarded as steady flow, and the mathematical models for the impeller forces were established from a cascade theory and measured data. Empirical coefficients are obtained comparing between computational and experimental results for the case without scroll, and are employed to simulate the flow through the impeller with scroll. In comparisons with experimental data, the validity of the mathematical models for the impeller forces was examined. The characteristics of the flow in the scroll were also discussed.

  • PDF

병렬 컴퓨터에서 다중블록 유한체적법을 이용한 비압축성 유동해석 (Numerical Prediction of Incompressible Flows Using a Multi-Block Finite Volume Method on a Parellel Computer)

  • 강동진;손정락
    • 한국유체기계학회 논문집
    • /
    • 제1권1호
    • /
    • pp.72-80
    • /
    • 1998
  • Computational analysis of incompressible flows by numerically solving Navier-Stokes equations using multi-block finite volume method is conducted on a parallel computing system. Numerical algorithms adopted in this study $include^{(1)}$ QUICK upwinding scheme for convective $terms,^{(2)}$ central differencing for other terms $and^{(3)}$ the second-order Euler differencing for time-marching procedure. Structured grids are used on the body-fitted coordinate with multi-block concept which uses overlaid grids on the block-interfacing boundaries. Computational code is parallelized on the MPI environment. Numerical accuracy of the computational method is verified by solving a benchmark test case of the flow inside two-dimensional rectangular cavity. Computation in the axial compressor cascade is conducted by using 4 PE's md, as results, no numerical instabilities are observed and it is expected that the present computational method can be applied to the turbomachinery flow problems without major difficulties.

  • PDF

2피치 유로의 캐스케이드 모델을 위한 벽면설계에 관한 연구 (Sidewalls Design for a Double-Passage Cascade Model)

  • 조종현;조봉수;김재실;조수용
    • 한국항공우주학회지
    • /
    • 제36권8호
    • /
    • pp.797-806
    • /
    • 2008
  • 본 연구에서는 선형 캐스케이드 실험장치의 유로를 캐스케이드 피치의 두배 넓이로 설정하고 두 개의 블레이드만을 설치하였다. 따라서 동일한 실험장치에서 다수개의 블레이드를 설치하는 경우에 비하여 큰 블레이드에서 실험이 가능하도록 하였다. 아울러 두 개의 블레이드 설치에 따른 주기조건의 어려움을 해소하기 위하여 실험장치 내의 작동유체의 배출이나 꼬리판의 조정을 하지 않아도 주기조건이 되도록 하는 실험장치의 벽면을 설계하였다. 이를 위하여 주기조건에서 얻어진 블레이드 표면에서의 마하수와 동일한 결과가 얻어지도록 목적함수를 설정하였으며, 설계변수로는 벽면의 형상변경과 관련이 있는 12개의 변수를 사용하였다. 벽면의 설계는 기울기 기반의 최적화법을 사용하였으며, 내부유동장의 계산은 상용코드인 CFX-11을 사용하였다. 두 결과의 비교에서 벽면의 조정만으로도 동일한 유동특성이 얻어질 수 있음을 확인하였다.

원심다익송풍기 유동의 삼차원 Navier-Stakes 해석 (Three-Dimensional Navier-Stokes Analysis of the Flow through A Multiblade Centrifugal Fan)

  • 서성진;첸시;김광용;강신형
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.42-48
    • /
    • 1998
  • Numerical study is presented for the analysis of three-dimensional incompressible turbulent flows in multiblade centrifugal fan. Reynolds-averaged Navier-Stokes equations with standard k - $\epsilon$ turbulence model are transformed to non-orthogonal curvilinear coordinates, and are discretized with finite volume approximations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. The computational area is divided into three blocks; core, impeller and scroll, which are linked by multi-block method. The flow inside of the fan is regarded as steady flow, and mathematical formula established from the cascade theory and empirical coefficient are employed to simulate tile flow through the impeller. From comparisons between the computational results and the experimental data, the validity of the mathematical formula for the blade forces was examined and good results were obtained qualitatively. Hence, we can get the flow characteristics of multi-blade centrifugal fan and it will be a corner stone of the development of the multiblade centrifugal fan.

  • PDF