• 제목/요약/키워드: Multi-failure mode

검색결과 77건 처리시간 0.025초

초기 이방성 SUS409L 박판재의 직사각 컵 성형을 위한 다단 디프드로잉 공정 적용에 관한 수치적 연구 (Numerical Simulation for a Multi-Stage Deep Drawing of Anisotropic SUS409L Sheet into a Rectangular Cup)

  • 박지우;구태완;강범수
    • 소성∙가공
    • /
    • 제22권3호
    • /
    • pp.133-142
    • /
    • 2013
  • Recently, electric vehicles and hybrid cars are being promoted as alternatives to reduce automobile emissions. Generally, thin sheet materials such as aluminum alloy AA300X and cold-rolled steel sheet such as JIS-G-3141 are used for the container for the lithium-ion secondary batteries. In this study, a multi-stage deep drawing process is used to produce a rectangular cup from thin stainless steel sheet material, SUS409L, with an initial blank thickness of 0.4mm for the battery container application. Numerical simulations of the first through the fifth stages for the multi-stage deep drawing with thin SUS409L sheet were conducted using LS-Dyna3D Implicit/Explicit. Special consideration was given to the deformation characteristics due to the normal anisotropy of the sheet material. The numerical simulations were conducted with both isotropic properties and the anisotropic properties of the initial blank material. An unexpected forming failure, barreling in the bottom region of the deep drawn rectangular cup, was observed. This failure mode can be avoided by additional ironing thickness control during the process.

불소도포가 상아질 접착에 미치는 영향 (EFFECT OF FLUORIDE APPLICATION ON DENTIN BONDING)

  • 권형조;박진훈;조규증
    • Restorative Dentistry and Endodontics
    • /
    • 제20권1호
    • /
    • pp.113-128
    • /
    • 1995
  • The purpose of this study was to investigate the effect of stannous fluoride on the dentin bonding with three kinds of commercially available dentin bonding systems containing different adhesive monomers. Dentin specimens with exposed labial dentin prepared from freshly extracted bovine mandibular anterior teeth were divided into experimental and control groups. The specimens of experimental groups were bonded with dentin bonding systems and composite resins including All bond 2 ㅡ& Bisfil, Scotchbond Multi-Purpose & Z100, and Denthesive II Charisma after 2 % stannous& fluorided application for S minutes and washing for 1 minute. The specimens of control groups were bonded with the same dentin bonding systems and composite resins as used in the experimental groups. After bonded specimens were stored in $37^{\circ}C$ distilled water for 24 hours, the tensile bond strength and cohesive failure rate were measured, and then the pretreated dentin surfaces and the fractured dentin surfaces were examined under scanning electron microscope. The results were as follows : Mean bond strength of stannous fluoride applied groups of All bond 2, Scotchbond MP, and Denthesive II were 2.5MPa, 1.1MPa, and 1.1MPa respectively, and those of control groups were 7.5MPa, 8.1MPa, and 4.6MPa. Bond strength values of stannous fluoride applied groups were significantly lower than those of the control groups(p<0.05). SEM findings of dentin surfaces after stannous fluoride application demonstrated an appearance of partially remained smear layer and smear plugs inspite of pretreatment with 10 % phosphoric aicd or maleic acid solution, and an appearance of smear layer covered surface under Denthesive II priming. But those of control groups commonly showed clean dentin surfaces without smear layer and smear plugs. On SEM observation of the fractured dentin-resin interface, while most of the specimens of stannous fluoride applied groups showed adhesive failure mode, those of All bond 2 and Scotchbond MP control groups showed mainly adhesive-cohesive mixed failure mode, and mainly adhesive failure mode in Denthesive II control group.

  • PDF

Damage detection of multi-storeyed shear structure using sparse and noisy modal data

  • Panigrahi, S.K.;Chakraverty, S.;Bhattacharyya, S.K.
    • Smart Structures and Systems
    • /
    • 제15권5호
    • /
    • pp.1215-1232
    • /
    • 2015
  • In the present paper, a method for identifying damage in a multi storeyed shear building structure is presented using minimum number of modal parameters of the structure. A damage at any level of the structure may lead to a major failure if the damage is not attended at appropriate time. Hence an early detection of damage is essential. The proposed identification methodology requires experimentally determined sparse modal data of any particular mode as input to detect the location and extent of damage in the structure. Here, the first natural frequency and corresponding partial mode shape values are used as input to the model and results are compared by changing the sensor placement locations at different floors to conclude the best location of sensors for accurate damage identification. Initially experimental data are simulated numerically by solving eigen value problem of the damaged structure with inclusion of random noise on the vibration characteristics. Reliability of the procedure has been demonstrated through a few examples of multi storeyed shear structure with different damage scenarios and various noise levels. Validation of the methodology has also been done using dynamic data obtained through experiment conducted on a laboratory scale steel structure.

일반도로교의 내진해석모델 개발 (Development of Earthquake Resistant Analysis Models for Typical Roadway Bridges)

  • 국승규;김판배
    • 한국지진공학회논문집
    • /
    • 제6권4호
    • /
    • pp.1-6
    • /
    • 2002
  • 일반설계에서 요구하는 구조물의 안전성은 탄성영역에서 일정수준의 안전계수를 확보하여 만족된다. 그러나 내진설계에서의 안전성은 소성영역에서 구조물의 형상에 따라 특정한 연성파괴메카니즘을 유도하여 확보하도록 요구하고 있다. 그러므로 이러한 안전성은 구조물의 기본설계단계에서 여러 개의 대안을 가지고 비교, 검토를 수행하여 확보되어야 하며 실시설계단계에서 이를 확인하는 작업이 이루어져야 한다. 이 연구에서는 일반도로교량을 대상으로 하여 기본설계와 실시설계에 사용하는 모델을 설정하였으며 양 모델의 동적거동특성인 주기와 모드형상을 비교하고 다중모드스펙트럼해석을 적용하여 파괴메카니즘을 규명하였다. 기본설계와 실시설계에 사용하는 모델로 각각 확인한 파괴메카니즘을 비교하여 기본설계모델의 타당성을 입증하고 실무에 적용할 수 있는 내진해석모델로 제시하였다.

물류보관 랙선반시설물의 시스템신뢰성 해석 (System Reliability Analysis of Rack Storage Facilities)

  • 옥승용;김동석
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.116-122
    • /
    • 2014
  • This study proposes a system reliability analysis of rack storage facilities subjected to forklift colliding events. The proposed system reliability analysis consists of two steps: the first step is to identify dominant failure modes that most contribute to the failure of the whole rack facilities, and the second step is to evaluate the system failure probability. In the first step, dominant failure modes are identified by using a simulation-based selective searching technique where the contribution of a failure mode to the system failure is roughly estimated based on the distance from the origin in the space of the random variables. In the second step, the multi-scale system reliability method is used to compute the system reliability where the first-order reliability method (FORM) is initially used to evaluate the component failure probability (failure probability of one member), and then the probabilities of the identified failure modes and their statistical dependence are evaluated, which is called as the lower-scale reliability analysis. Since the system failure probability is comprised of the probabilities of the failure modes, a higher-scale reliability analysis is performed again based on the results of the lower-scale analyses, and the system failure probability is finally evaluated. The illustrative example demonstrates the results of the system reliability analysis of the rack storage facilities subjected to forklift impact loadings. The numerical efficiency and accuracy of the approach are compared with the Monte Carlo simulations. The results show that the proposed two-step approach is able to provide accurate reliability assessment as well as significant saving of computational time. The results of the identified failure modes additionally let us know the most-critical members and their failure sequence under the complicated configuration of the member connections.

FMEA 개념과 사례베이스추론 기법을 이용한 보전작업순서결정시스템의 개발 (Development of Maintenance Sequence System by Using Modified FMEA and CBR)

  • 김광만
    • 대한안전경영과학회지
    • /
    • 제3권4호
    • /
    • pp.103-112
    • /
    • 2001
  • In Factory, as the number of machine is increased the more maintenance efforts are necessary. Multi maintenance issues may occur at a certain time and the determination of maintenance sequence is needed. In this study, we first compare the priority of machines and the impact value using modified FMEA(Failure Mode Effect and Analysis) method. Also, CBR(Case-based Reasoning) approach is applied to retrieve similar fault cases of current machine problem. The proposed methodology will be useful to implement decision support system of maintenance sequence for CMMS/EAM (Computerized Maintenance Management System/Enterprise Asset Management).

  • PDF

Multi-potential capacity for reinforced concrete members under pure torsion

  • Ju, Hyunjin;Han, Sun-Jin;Kim, Kang Su;Strauss, Alfred;Wu, Wei
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.401-414
    • /
    • 2020
  • Unlike the existing truss models for shear and torsion analysis, in this study, the torsional capacities of reinforced concrete (RC) members were estimated by introducing multi-potential capacity criteria that considered the aggregate interlock, concrete crushing, and spalling of concrete cover. The smeared truss model based on the fixed-angle theory was utilized to obtain the torsional behavior of reinforced concrete member, and the multi-potential capacity criteria were then applied to draw the capacity of the member. In addition, to avoid any iterative calculation in the existing torsional behavior model, a simple strength model was suggested that considers key variables, such as the effective thickness of torsional member, principal stress angle, and strain effect that reduces the resistance of concrete due to large longitudinal tensile strain. The proposed multi-potential capacity concept and the simple strength model were verified by comparing with test results collected from the literature. The study found that the multi-potential capacity could estimate in a rational manner not only the torsional strength but also the failure mode of RC members subjected to torsional moment, by reflecting the reinforcing index in both transverse and longitudinal directions, as well as the sectional and material properties of RC members.

Studies on T-Shaped composite columns consist of multi separate concrete-filled square tubular steel sections under eccentric axial load

  • Rong, Bin;You, Guangchao;Zhang, Ruoyu;Feng, Changxi;Liu, Rui
    • Steel and Composite Structures
    • /
    • 제22권2호
    • /
    • pp.217-234
    • /
    • 2016
  • In order to investigate mechanical properties and load-bearing capacity of T-shaped Concrete-Filled Square Steel Tubular (TCFST) composite columns under eccentric axial load, three T-shaped composite columns were tested under eccentric compression. Experimental results show that failure mode of the columns under eccentric compression was bending buckling of the whole specimen, and mono column performs flexural buckling. Specimens behaved good ductility and load-bearing capacity. Nonlinear finite element analysis was also employed in this investigation. The failure mode, the load-displacement curve and the ultimate bearing capacity of the finite element analysis are in good agreement with the experimental ones. Based on eccentric compression test and parametric finite element analysis, the calculation formula for the equivalent slenderness ratio was proposed and the bearing capacity of TCFST composite columns under eccentric compression was calculated. Results of theoretical calculation, parametric finite element analysis and eccentric compression experiment accord well with each other, which indicates that the theoretical calculation method of the bearing capacity is advisable.

Reinforcement layout design for deep beam based on BESO of multi-level reinforcement diameter under discrete model

  • Zhang, Hu-zhi;Luo, Peng;Yuan, Jian;Huang, Yao-sen;Liu, Jia-dong
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.547-560
    • /
    • 2022
  • By presetting various reinforcement diameters in topology optimization with the discrete model finite element analysis, an algorithm of bidirectional evolutionary structural optimization of multi-level reinforcement diameter is presented to obtain the optimal reinforcement topologies which describe the degree of stress of different parts. The results of a comparative study on different reinforcement feasible domain demonstrate that the more angle types of reinforcement are arranged in the initial domain, the higher utilization rate of reinforcement of the optimal topology becomes. According to the nonlinear finite element analysis of some deep beam examples, the ones designed with the optimization results have a certain advantage in ultimate bearing capacity, although their failure modes are greatly affected by the reinforcement feasible domain. Furthermore, the bearing capacity can be improved when constructional reinforcements are added in the subsequent design. However the adding would change the relative magnitude of the bearing capacity between the normal and inclined section, or the relative magnitude between the flexural and shear capacity within the inclined section, which affects the failure modes of components. Meanwhile, the adding would reduce the deformation capacity of the components as well. It is suggested that the inclined reinforcement and the constructional reinforcement should be added properly to ensure a desired ductile failure mode for components.

Thermal and telemetry module design for satellite camera

  • Kong, Jong-Pil;Yong, Sang-Soon;Heo, Haeng-Pal;Kim, Young-Sun;Youn, Heong-Sik
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.229-234
    • /
    • 2002
  • Under the hostile influence of the extreme space environmental conditions due to the deep space and direct solar flux, the thermal control in space applications is especially of major importance. There are tight temperature range restrictions for electro-optical elements while on the other hand there are low power consumption requirements due to the limited energy sources on the spacecraft. So, we usually have strong requirement of thermal and power control module in space applications. In this paper, the design concept of a thermal and power control module in the MSC(Multi-Spectral Camera) system which will be a payload on KOMPSATII is described in terms of H/W & S/W. This thermal and power control module, called THTM(Thermal and Telemetry Module) in MSC, resides inside the PMU(Payload Management Unit) which is responsible for the proper management of the MSC payload for controlling and monitoring the temperature insides the EOS(Electro-Optic System) and gathering all the analog telemetry from all the MSC sub-units, etc. Particularly, the designed heater controller has the special mode of "duty cycle" in addition to normal closed loop control mode as usual. THTM controls heaters in open loop according to on/off set time designed through analysis in duty cycle mode in case of all thermistor failure whereas it controls heaters by comparing the thermistor value to temperature based on closed loop in normal mode. And a designed THTM provides a checking and protection method against the failure in thermal control command using the test pulse in command itself.

  • PDF