• Title/Summary/Keyword: Multi-factor Test

Search Result 329, Processing Time 0.029 seconds

Performance Evaluation of Polymer Insulator using Tracking Wheel and Multi-Aging Test (트래킹 휠과 복합열화시험에 의한 폴리머 애자의 성능 평가)

  • 조한구;안명상;한세원;허종철;이운용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.119-122
    • /
    • 2000
  • Recently polymer insulators are being used for outdoor high voltage applications. Polymer insulators for transmission line have significant advantages over porcelain and glass insulators, especially for ultra-high voltage transmission lines. Their advantages are light weight, vandalism resistance and hydrophobicity. Polymer insulators are a relatively new technology, but their expected life is still unknown. Therefore these estimating technique are very important. Their life time is related to weathering and operating condition. Multi-aging test is requested because aging factor is occurred by multi-aging than unique aging. The aging test about polymer insulators have mainly carried out by IEC 61109. This paper presents multi-stress chamber experiments and tracking wheel test to examine the tracking and erosion performance of polymer insulator for transmission. Multi-stress testing is able to demonstrate deficiencies of polymer insulator materials and designs, including the nature of interfaces in insulation design. We have investigated IEC 61109 Annex C (5000h aging test) and CEA tracking wheel test as test methods of artificial accelerated aging. The aging degree of polymer insulator is estimated by leakage current, measurement of hydrophobicity degree, damage conditions of insulator surface, withstand voltage test etc.

  • PDF

A Model and Simulated Annealing Algorithm for the Multi-factor Plant Layout Problem (다수요인을 가진 설비배치문제를 위한 모형과 simulated annealing 알고리즘)

  • 홍관수
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.20 no.1
    • /
    • pp.63-81
    • /
    • 1995
  • This paper presents a model and algorithm for solving the multi-factor plant layout problem. The model can incorporate more than two factors that may be either quantitative or qualitative. The algorithm is based on simulated annealing, which has been successfully applied for the solution of combinatorial problems. A set of problems previously used by various authors is solved to demonstrate the effectiveness of the proposed methods. The results indicate that the proposed methods can yield good quality for each of eleven test problems.

  • PDF

Usefulness of Non-Invasive Measurement Tool on Performance Evaluation of Inverter Type X-ray Unit (인버터식 X선장치의 성능평가 시 비접속형 측정기의 유용성)

  • Kang, Se-Sik;Kim, Chang-Soo;Ko, Sung-Jin
    • Journal of radiological science and technology
    • /
    • v.31 no.2
    • /
    • pp.123-127
    • /
    • 2008
  • Purpose: As the demand of a simple and precise method increases to evaluate the performance of the inverter type x-ray unit, we evaluated the usefulness of the recently-introduced X-ray Multi-Function Test Device (moldel : Xi (unfors)-prestige). Method: We compared the performance of X-ray Multi-Function Test Device (XMFTD) which is non-inveasive type device with the performance of Dynalyzer III that has been most widely used inveasive type measure device. Result: X-ray output dose was increased a little in the XMFTD, but both devices were below the performance evaluation standard, 0.002 in the output reproducibility. Linearity of XMFTD were below 0.1 which means that Dynalyzer III showed more excellency in linearity. As the the accuracy of exposure factor, 1.8 and 2 tube voltage, 2.01 and 2.3 tube current were measured. The exposure time was also measured by 0.01 sec ${\pm}10%$. Both devices were within the acceptance of performance evaluatioin standard. Conclusion: We proved the usefulness of X-ray Multi-Function Test Device (model: Xi (unfors)-prestige) to evaluated the performance on reproductibility and linearity of X-ray output and accuracy of exposure factor of inverter type unit.

  • PDF

Material Characteristics of Dental Implant System with In-Vitro Mastication Loading

  • Jeong, Tae-Gon;Jeong, Yong-Hun;Lee, Su-Won;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Gang, Gwan-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.72-72
    • /
    • 2018
  • A dynamic fatigue characteristic of dental implant system has been evaluated with applying single axial compressive shear loading based on the ISO 14801 standard. For the advanced dynamic fatigue test, multi-directional force and motion needed to be accompanied for more information of mechanical properties as based on mastication in oral environment. In this study, we have prepared loading and motion protocol for the multi-directional fatigue test of dental implant system with single (Apical/Occlusal; AO), and additional mastication motion (Lingual/Facial; LF, Mesial/Distal; MD). As following the prepared protocol (with modification of ISO 14801), fatigue test was conducted to verify the worst case results for the development of highly stabilized dental implant system. Mechanical testing was performed using an universal testing machine (MTS Bionix 858, MN, USA) for static compression and single directional loading fatigue, while the multi-directional loading was performed with joint simulator (ADL-Force 5, MA, USA) under load control. Basically, all mechanical test was performed according to the ISO 14801:2016 standard. Static compression test was performed to identify the maximum fracture force with loading speed of 1.0 mm/min. A dynamic fatigue test was performed with 40 % value of maximum fracture force and 5 Hz loading frequency. A single directional fatigue test was performed with only apical/occlusal (AO) force application, while multi directional fatigue tests were applied $2^{\circ}$ of facial/lingual (FL) or mesial/distal (MD) movement. Fatigue failure cycles were entirely different between applying single-directional loading and multi-directional loading. As a comparison of these loading factor, the failure cycle was around 5 times lower than single-directional loading while applied multi-directional loading. Also, the displacement change with accumulated multi-directional fatigue cycles was higher than that of single directional cycles.

  • PDF

Effect of Hydrostatic Pressure on the Elastic Work Factor of Graphite/Epoxy Composites (정수압이 탄소섬유/에폭시 복합재의 탄성일인자에 미치는 영향)

  • 이지훈;김만태;신명근;한운용;이경엽
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1390-1393
    • /
    • 2003
  • Work factor approach is conveniently used in metal fracture mechanics to determine fracture toughness from a single fracture test. In this work, we investigated the applicability of the work factor approach in order to determine fracture toughness of thick graphite/epoxy composites in the hydrostatic pressure environment from a single fracture test. The effect of hydrostatic pressure on the elastic work factor was studied, The stacking sequence used was multi-directional, [0$^{\circ}$/${\pm}$45$^{\circ}$/90$^{\circ}$]. The hydrostatic pressures applied were 0.1 MPa, 100 MPa, 200 MPa, and 300 MPa. The results showed that the elastic work factor was not affected by the hydrostatic pressure, The elastic work factor decreased in a linear fashion with crack length.

  • PDF

Aging Characteristics of Polymer Lighting Arrester by Multi-Stress Accelerated Aging Test (복합가속열화시험에 의한 폴리머 피뢰기의 경년특성)

  • Song, Hyun-Seok;Lee, Jae-Bong;Jang, Sang-Ok;Han, Yong-Huei;Oh, Jae-Hyoung
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.86-89
    • /
    • 2004
  • Recently polymer arresters are being used widely but we don't have appropriate long term characteristics test methods. Therefore we need to develop special test facility to evaluate long term reliability of polymer arresters. It's polymeric housing can be degraded by environmental stress and the interface between housing and inner module can be affected by moisture absorption. This moisture absorption can cause leakage current and tracking in the interface. We developed multi stress accelerated ageing test facility to simulate field conditions including UV, temperature, humidity, voltage, salt fog and rain. In addition, we carried out field exposure test at the outdoor test yard and characteristics analysis of field operated specimens to evaluate accelerating factor of this accelerated aging test.

  • PDF

Selection of Coupling Factor for Minimum Inductor Current Ripple in Multi-winding Coupled Inductor Used in Bidirectional DC-DC Converters

  • Kang, Taewon;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.879-891
    • /
    • 2018
  • A bidirectional dc-dc converter is used in battery energy storage systems owing to the growing requirements of a charging and discharging mode of battery. The magnetic coupling of output or input inductors in parallel-connected multi modules of a bidirectional dc-dc converter is often utilized to reduce the peak-to-peak ripple size of the inductor current. This study proposes a novel design guideline to achieve minimal ripple size of the inductor current under bidirectional power flow. The newly proposed design guideline of optimized coupling factor is applicable to the buck and boost operation modes of a bidirectional dc-dc converter. Therefore, the coupling factor value of the coupled inductor does not have to be optimized separately for buck and boost operation modes. This new observation is explained using the theoretical model of coupled inductor and confirmed through simulation and experimental test.

Flexural Strengthening with Multi-Layer GFRP Sheets on Full-Scale RC Beams (유리섬유쉬트에 의한 실물모형 RC보의 보강매수별 휨 보강효과)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.177-180
    • /
    • 2005
  • The specified tensile strength provided by the manufacturer is determined on the basis of the reliable lower limit ($X-3{\sigma}$ : X=average tensile strength, $\sigma$=standard deviation) obtained from the material test results. Most of these data, however, are based on the test results of 1 layer of FRP sheet. Also, the partial strength reduction factor for strengthening RC members with FRP is based on the small-scale model tests. But, the failure mechanisms of small-scale model tests are reported to be different from those of the full-scale tests. This paper present the test results of full-scale RC beams strengthened with multi-layer GFRP sheets up to 3 layer as well as the material tests. From the material tests, it was observed that the average tensile strengths of GFRP sheets are decreased as the number of layer are increased. Also the premature debonding failure of RC beams strengthened with multi-layer GFRP sheets are observed in inverse proportion to the number of GFRP sheets

  • PDF

Multi-factor Evolution for Large-scale Multi-objective Cloud Task Scheduling

  • Tianhao Zhao;Linjie Wu;Di Wu;Jianwei Li;Zhihua Cui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1100-1122
    • /
    • 2023
  • Scheduling user-submitted cloud tasks to the appropriate virtual machine (VM) in cloud computing is critical for cloud providers. However, as the demand for cloud resources from user tasks continues to grow, current evolutionary algorithms (EAs) cannot satisfy the optimal solution of large-scale cloud task scheduling problems. In this paper, we first construct a large- scale multi-objective cloud task problem considering the time and cost functions. Second, a multi-objective optimization algorithm based on multi-factor optimization (MFO) is proposed to solve the established problem. This algorithm solves by decomposing the large-scale optimization problem into multiple optimization subproblems. This reduces the computational burden of the algorithm. Later, the introduction of the MFO strategy provides the algorithm with a parallel evolutionary paradigm for multiple subpopulations of implicit knowledge transfer. Finally, simulation experiments and comparisons are performed on a large-scale task scheduling test set on the CloudSim platform. Experimental results show that our algorithm can obtain the best scheduling solution while maintaining good results of the objective function compared with other optimization algorithms.

Review of Regulation for Rollover Test and Evaluation of Safety for Buses by using Simulation of Multi-body Dynamics (다물체 동역학 시뮬레이션을 통한 버스의 전복 시험 규정과 안전성 평가에 관한 고찰)

  • Park, Seung Woon;Choi, Yo Han;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.39-46
    • /
    • 2022
  • In South Korea, to evaluate the rollover safety of domestic vehicles, the maximum slope angle of the vehicle is specified, which is verified by the rollover safety test of driving vehicles. However, the domestic rollover safety test is not suitable for buses, because the small amount of static stability factor (SSF) will invalidate the rollover experimental equation due to the high center of mass position of buses. To solve the above problems, a dynamic model of the bus is prepared with assumptions of mass and suspension spring properties. Subsequently, the maximum slope angle of the model was computed by using the simulation of multi-body dynamics, and the result was compared with actual test results to validate the dynamics model. Also, the rollover Fishhook (roll stability) test was conducted in the simulation for driving model. During the simulation, roll angle and roll rate were calculated to check if a rollover occurred. Through the rollover simulation of buses, the domestically regulated formula for rollover safety and the procedure of rollover test for driving vehicles are evaluated. The conclusion is that the present regulation of rollover test should be reconsidered for buses to ensure to get the valid results for rollover safety.