• Title/Summary/Keyword: Multi-domain simulation

Search Result 207, Processing Time 0.023 seconds

A Study of Vehicle Fuel Consumption Simulation using VHDL-AMS Multi-domain Simulation

  • Abe, Takashi;Takakura, Shikoh;Higuchi, Tsuyoshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.232-238
    • /
    • 2013
  • The vehicle system is a multi-domain system that requires many branches of science and engineering. Therefore the development of the vehicle system requires the use of design methodologies that utilize simulations, which have grown increasingly sophisticated in recent years. Our research group proposed a simulation modeling method based on the VHDL-AMS language. This paper describes how VHDL-AMS is used to model of vehicle fuel consumption simulation. The fuel consumption is shown using proposed simulation model on the Japanese 10-15 mode. We examine the influence of the vehicle system with electrical load and hill climb resistance in the vehicle running resistance.

Thermal Analysis of High Density Permanent Magnet Synchronous Motor Based on Multi Physical Domain Coupling Simulation

  • Chen, ShiJun;Zhang, Qi;He, Biao;Huang, SuRong;Hui, Dou-Dou
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.91-99
    • /
    • 2017
  • In order to meet the thermal performance analysis accuracy requirements of high density permanent magnet synchronous motor (PMSM), a method of multi physical domain coupling thermal analysis based on control circuit, electromagnetic and thermal is presented. The circuit, electromagnetic, fluid, temperature and other physical domain are integrated and the temperature rise calculation method that considers the harmonic loss on the frequency conversion control as well as the loss non-uniformly distributed and directly mapped to the temperature field is closer to the actual situation. The key is to obtain the motor parameters, the realization of the vector control circuit and the accurate calculation and mapping of the loss. Taking a 48 slots 8 poles high density PMSM as an example, the temperature rise distribution of the key components is simulated, and the experimental platform is built. The temperature of the key components of the prototype machine is tested, which is in agreement with the simulation results. The validity and accuracy of the multi physical domain coupling thermal analysis method are verified.

Multi-Domain Model for Electric Traction Drives Using Bond Graphs

  • Silva, Luis I.;De La Barrera, Pablo M.;De Angelo, Cristian H.;Aguilera, Facundo;Garcia, Guillermo O.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.439-448
    • /
    • 2011
  • In this work the Multi-Domain model of an electric vehicle is developed. The electric domain model consists on the traction drive and allows including faults associated with stator winding. The thermal model is based on a spatial discretization. It receives the power dissipated in the electric domain, it interacts with the environment and provides the temperature distribution in the induction motor. The mechanical model is a half vehicle model. Given that all models are obtained using the same approach (Bond Graph) their integration becomes straightforward. This complete model allows simulating the whole system dynamics and the analysis of electrical/mechanical/thermal interaction. First, experimental results are aimed to validate the proposed model. Then, simulation results illustrate the interaction between the different domains and highlight the capability of including faults.

Numerical Simulation of 2-D Estuaries and Coast by Multi-Domain and the Interpolating Matrix Method (Multi-Domain과 행렬 보간법을 이용한 강 하구와 연안의 2차원 수치해석)

  • Chae H. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 1997
  • This paper presents a two-dimensional horizontal implicit model to general circulation in estuaries and coastal seas. The model is developed in non-orthogonal curvilinear coordinates system, using the Interpolating Matrix Method (IMM), in combination with a technique of multi-domain. In the propose model, the Saint-Venant equations are solved by a splitting-up technique, in the successive steps; convection, diffusion and wave propagation. The ability of the proposed model to deal with full scale nature is illustrated by the interpretation of a dye-tracing experiment in the Gironde estuary.

  • PDF

Auxiliary domain method for solving multi-objective dynamic reliability problems for nonlinear structures

  • Katafygiotis, Lambros;Moan, Torgeir;Cheungt, Sai Hung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.3
    • /
    • pp.347-363
    • /
    • 2007
  • A novel methodology, referred to as Auxiliary Domain Method (ADM), allowing for a very efficient solution of nonlinear reliability problems is presented. The target nonlinear failure domain is first populated by samples generated with the help of a Markov Chain. Based on these samples an auxiliary failure domain (AFD), corresponding to an auxiliary reliability problem, is introduced. The criteria for selecting the AFD are discussed. The emphasis in this paper is on the selection of the auxiliary linear failure domain in the case where the original nonlinear reliability problem involves multiple objectives rather than a single objective. Each reliability objective is assumed to correspond to a particular response quantity not exceeding a corresponding threshold. Once the AFD has been specified the method proceeds with a modified subset simulation procedure where the first step involves the direct simulation of samples in the AFD, rather than standard Monte Carlo simulation as required in standard subset simulation. While the method is applicable to general nonlinear reliability problems herein the focus is on the calculation of the probability of failure of nonlinear dynamical systems subjected to Gaussian random excitations. The method is demonstrated through such a numerical example involving two reliability objectives and a very large number of random variables. It is found that ADM is very efficient and offers drastic improvements over standard subset simulation, especially when one deals with low probability failure events.

IDENTIFICATION OF THERMODYNAMIC PARAMETERS OF ARCTIC SEA ICE AND NUMERICAL SIMULATION

  • Xiw, Chao;Feng, Enmin;Li, Zhijun;Peng, Lu
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.519-530
    • /
    • 2008
  • This paper studies the multi-domain coupled system of one dimensional Arctic temperature field and establishes identification model about the thermodynamic parameters of sea ice (heat storage capacity, density and conductivity) by the so-called output least-square estimate according to the temperature data acquired by a monitor buoy installed in the Arctic ocean. By the optimal control theory, the existence and dependability of weak solution and the identifiability of identification model have been given. Moreover, necessary optimality condition is proposed. Furthermore, the optimal algorithm for the identification model is constructed. By using the optimal thermodynamic parameters of Arctic sea ice, the numerical simulation is implemented, and the numerical results of temperature distribution of Arctic sea ice are demonstrated.

  • PDF

A Study on the Modeling and Simulation of an Electro-Hydraulic Power Steering system (전기 유압식 동력 조향시스템의 모델링 및 시뮬레이션에 관한 연구)

  • Kim, Ji-Hye;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1008-1013
    • /
    • 2012
  • Electro-hydraulic power steering (EHPS) system is the power-assisted steering which operates the hydraulic pump by BLDC motors for assisting the steering force. EHPS consists of BLDC motor, gear pump, oil-hydraulic circuit and steering system. Since EHPS is a convergence system consisting of electricity and electronic, hydraulic and mechanical system, it is difficult to establish the simulation model. In this paper, the mathematical model of EHPS system components were presented, and the simulations of the multi-domain system were performed by using AMESim. The trial and error of development would be reduced by using this simulation results, and it would be helpful for developing high-quality EHPS.

Frequency-domain Based BPM-UWB Receiver with Channel Compensation (다중경로 채널을 보상하는 주파수 영역 기반 BPM-UWB 수신기)

  • Choi, Ho-Seon;Yang, Hoon-Gee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.1
    • /
    • pp.84-91
    • /
    • 2008
  • In this paper, we propose a Sequency domain based BPM-UWB receiver compensating for distortion in the multi-path channel. We give a mathematical derivation for the proposed receiver which exploits a matched filter theory for optimum reception. We also analyze the system performance and present the simulation results that show the performance enhancement of the proposed system.

  • PDF

A Study on the Turbulent Flowfield in the Annular Combustor with the Multi Swirl Injectors (환형연소기의 Multi Swirl Injector 상호간섭 영향에 관한 연구(1))

  • Kim, Jong-Chan;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.289-292
    • /
    • 2009
  • Injector dynamics of multi swirl injectors in an annular combustor have been investigated by LES(Large Eddy Simulation) turbulent model with MPI parallel computation technique. The present study employs the LM6000 lean premixed swirl-stabilized annular combustor. Real shape combustor is simulated in order to investigate the detail interaction mechanism among multi-injectors. The strong vortex breakdown occurs at the impinging surface between the adjacent injectors so that the complex and strong oscillatory pressure propagates inside of the combustor. Tangential pressure fluctuation mode was captured by including multi injectors in computational domain.

  • PDF