• 제목/요약/키워드: Multi-domain boundary element method

검색결과 40건 처리시간 0.024초

PFBEM을 이용한 자동차 실내외 다영역 공간의 소음해석 (Car Interior and Exterior Multi-domain Noise Analysis using Power Flow Boundary Element Method)

  • 김종도;홍석윤;이호원;권현웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.489-493
    • /
    • 2007
  • Mmulti-domain noise analysis method using Power Flow Boundary Element Method(PFBEM) has been developed successfully. Some applications are introduced. several examples. PFBEM is a numerical analysis method formulated by applying Boundary Element Method(BEM) to Power Flow Analysis(PFA). PFBEM is very powerful in predicting noise level in medium-to-high frequency ranges. However there are restrictions in analyzing the coupled structures and multi-media. In this paper, an analysis method for multi-domain acoustic problems in the diverse acoustic fields is suggested. And the developed method is applied to the car interior and exterior multi-domain noise analysis.

  • PDF

Multi-Domain Structural-Acoustic Coupling Analysis Using the Finite Element and Boundary Element Techniques

  • Ju, Hyeon-Don;Lee, Shi-Bok
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.555-561
    • /
    • 2001
  • A new approach to analyze the multi-domain acoustic system divided and enclosed by flexible structures is presented in this paper. The boundary element formulation of the Helmholtz integral equation is used for the internal fields and the finite element formulation for the structures surrounding the fields. We developed a numerical analysis program for the structural-acoustic coupling problems of the multi-domain system, in which boundary conditions such as the continuity of normal particle velocity and sound pressure in the structural interfaces between Field 1 and Field 2 are not needed. The validity of the numerical analysis program is verified by comparing the numerical results with the experimental ones. Example problems are included to investigate the characteristics of the coupled multi-domain system.

  • PDF

다층 반무한 기본해를 이용한 경계요소해석 (Boundary Element Method for Multilayered Media Using Numerical Fundamental Solutions)

  • 김문겸;오금호;김민규;박준상
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.79-86
    • /
    • 1996
  • A boundary element method which utilizes the fundamental solution in the half plane is developed to analyze the multi-layered elastic media. The objective of this study is to derive numerically the fundamental solutions and to apply those to the exterior multi-layered domain problems. To obtain numerical fundamental solutions of multi-layered structural system, the same number of solutions as that of layers in Fourier transform domain are employed. The numerical integration technique is used in order to inverse the Fourier transform solution to real domain. To verify the proposed boundary element method, two examples are treated: (1) a circular hole near the surface of a half plane; and (2) a circular cavity within one layer of four layered half plane.

  • PDF

반무한 다중 구조계의 비선형 유한요소 - 경계요소 해석 (Analysis of Multi-Layered Structural Systems Using Nonlinear Finite Elements-Boundary Elements)

  • 김문겸;장정범;이상도;황학주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.58-64
    • /
    • 1992
  • It is usual that underground structures are constructed within multi-layered medium. In this paper, an efficient numerical model ling of multi-layered structural systems is studied using coupled analysis of finite elements and boundary elements. The finite elements are applied to the area in which the material nonlinearity is dominated, and the boundary elements are applied to the far field area where the nonlinearity is relatively weak. In the boundary element model 1 ins of the multi-layered medium, fundamental solutions are restricted. Thus, methods which can utilize existing Kelvin and Melan solution are sought for the interior multi-layered domain problem and semi infinite domain problem. Interior domain problem which has piecewise homogeneous layers is analyzed using boundary elements with Kelvin solution; by discretizing each homogeneous subregion and applying compatibility and equilibrium conditions between interfaces. Semi-infinite domain problem is analyzed using boundary elements with Melan solution, by superposing unit stiffness matrices which are obtained for each layer by enemy method. Each methodology is verified by comparing its results which the results from the finite element analysis and it is concluded that coupled analysis using boundary elements and finite elements can be reasonable and efficient if the superposition technique is applied for the multi-layered semi-infinite domain problems.

  • PDF

3차원 다영역 공간의 소음해석을 위한 파워흐름경계요소법 개발 (Development of Power Flow Boundary Element Method for 3-dimensional Multi-domain Noise Analysis)

  • 김종도;홍석윤;송지훈
    • 한국소음진동공학회논문집
    • /
    • 제21권10호
    • /
    • pp.967-974
    • /
    • 2011
  • The direct and indirect PFBEM(power flow boundary element method) for the treatment of the 3 dimensional multi-domain problems are proposed to predict the acoustic energy density in medium to high frequency ranges. In the proposed method, the equation is derived in a matrix form by considering coupled relationships of the power flow at the interface of given domains. The proposed method can successfully obtain the analytical solutions for the problems of coupled cubes and the small-scale reverberant chamber. Then the experiment is carried out to obtain STL(sound transmission loss) by using small-scale reverberant chamber and the results are compared with analysis results.

Numerical Solutions of Multi-Dimensional Solidification/Melting Problems by the Dual Reciprocity Boundary Element Method

  • Jo, Jong-Chull;Shin, Won-Ky
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 추계학술발표회논문집(1)
    • /
    • pp.617-624
    • /
    • 1997
  • This Paper Presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available.

  • PDF

FEM-BEM iterative coupling procedures to analyze interacting wave propagation models: fluid-fluid, solid-solid and fluid-solid analyses

  • Soares, Delfim Jr.
    • Coupled systems mechanics
    • /
    • 제1권1호
    • /
    • pp.19-37
    • /
    • 2012
  • In this work, the iterative coupling of finite element and boundary element methods for the investigation of coupled fluid-fluid, solid-solid and fluid-solid wave propagation models is reviewed. In order to perform the coupling of the two numerical methods, a successive renewal of the variables on the common interface between the two sub-domains is performed through an iterative procedure until convergence is achieved. In the case of local nonlinearities within the finite element sub-domain, it is straightforward to perform the iterative coupling together with the iterations needed to solve the nonlinear system. In particular, a more efficient and stable performance of the coupling procedure is achieved by a special formulation that allows to use different time steps in each sub-domain. Optimized relaxation parameters are also considered in the analyses, in order to speed up and/or to ensure the convergence of the iterative process.

A novel 3D BE formulation for general multi-zone domains under body force loading

  • Ghiasian, Mohammad;Ahmadi, Mohammad Taghi
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.775-789
    • /
    • 2013
  • The current paper proposes a boundary element formulation, applicable to 2-D and 3-D elastostatics problems using a unified approach for transformations of the domain integrals into boundary integrals. The method is applicable to linear problems encompassing both finite and infinite multi-region domains allowing non-vanishing body forces. Numerical results agree quite well with the analytical solutions; while the present method offers easy formulation with less numerical efforts in comparison to FEM or some BEM which need interior points to treat arbitrary body forces. It is demonstrated that the method has the potential to have profound impact on engineering design, notably in dam-foundation interaction.

주변 공동을 고려한 터널의 동적거동에 관한 연구 (A Study on the Dynamic Behavior of Underground Tunnels with a Cavity)

  • 김민규;이종우;이종세
    • 터널과지하공간
    • /
    • 제12권3호
    • /
    • pp.171-178
    • /
    • 2002
  • 본 연구에서는 마제형터널 주변에 공동이 존재하는 경우에 대해 동적해석을 수행함으로써 터널주변의 공동이 터널의 동적거동에 미치는 영향을 검토하였다. 이를 위해 반무한 평면상에서 터널의 동적응답해석을 수행할 수 있는 해석기법을 개발하였다. 먼저 주파수 영역에서의 다층 반무한 지반내에서의 동적 기본해를 유도하였고 이를 경계요소에 적용하였다. 외부영역을 모형화한 경계요소를 내부영역의 유한요소와 조합하여 반무한 영역에서의 터널구조의 동적응답을 구할 수 있도록 하였다. 개발된 기법의 검증을 위하여 단층 및 다층 반무한 구조계에 대해 Ricker 파형을 이용한 동적해석을 수행하여 기존의 해석결과와 비교하였고, 개발된 기법을 이용하여 석회암층에 있는 터널에 대해 공동의 유무 및 터널과의 이격거리에 따른 터널의 동적거동을 고찰하였다.