• Title/Summary/Keyword: Multi-dimensional flow

Search Result 344, Processing Time 0.025 seconds

Analysis of Spatial Water Quality Variation in Daechung Reservoir (대청호 수리-수질의 공간적 변동 특성 분석)

  • Lee, Heung Soo;Chung, Se Woong;Choi, Jung Kyu;Oh, Dong Geun;Heo, Tae Young
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.699-709
    • /
    • 2011
  • The uses of multi-dimensional hydrodynamic and water quality models are increasing to support a sustainable management of large dam reservoirs in Korea. Any modeling study requires selection of a proper spatial dimension of the model based on the characteristics of spatial variability of concerned simulation variables. For example, a laterally averaged two-dimensional (2D) model, which has been widely used in many large dam reservoirs in Korea, assumes that the lateral variations of hydrodynamic and water quality variables are negligible. However, there has been limited studies to give a justification of the assumption. The objectives of this study were to present the characteristics of spatial variations of water quality variables through intensive field monitoring in Daechung Reservoir, and provide information on a proper spatial dimension for different water quality parameters. The monitoring results showed that the lateral variations of water temperature are marginal, but those of DO, pH, and conductivity could be significant depending on the hydrological conditions and local algal biomass. In particular, the phytoplankton (Chl-a) and nutrient concentrations showed a significant lateral variation at R2 (Daejeongri) during low flow periods in 2008 possibly because of slow lateral mixing of tributary inflow from So-oak Stream and wind driven patchiness.

The effect of different tornado wind fields on the response of transmission line structures

  • Ezami, Nima;El Damatty, Ashraf;Hamada, Ahmed;Hamada, Mohamed
    • Wind and Structures
    • /
    • v.34 no.2
    • /
    • pp.215-230
    • /
    • 2022
  • Majority of transmission line system failures at many locations worldwide have been caused by severe localized wind events in the form of tornadoes and downbursts. This study evaluates the structural response of two different transmission line systems under equivalent F2 tornadoes obtained from real incidents. Two multi-span self-supported transmission line systems are considered in the study. Nonlinear three-dimensional finite element models are developed for both systems. The finite element models simulate six spans and five towers. Computational Fluid Dynamics (CFD) simulations are used to develop the tornado wind fields. Using a proper scaling method for geometry and velocity, full-scale tornado flow fields for the Stockton, KS, 2005 and Goshen County WY, 2009 are developed and considered together with a previously developed tornado wind field. The tornado wind profiles are obtained in terms of tangential, radial, and axial velocities. The simulated tornadoes are then normalized to the maximum velocity value for F2 tornadoes in order to compare the effect of different tornadoes having an equal magnitude. The tornado wind fields are incorporated into a three-dimensional finite element model. By varying the location of the tornado relative to the transmission line systems, base shears of the tower of interest and peak internal forces in the tower members are evaluated. Sensitivity analysis is conducted to assess the variation of the structural behaviour of the studied transmission lines associated with the location of the tornado relative to the tower of interest. The tornado-induced forces in both lines due to the three different normalized tornadoes are compared with corresponding values evaluated using the simplified load case method recently incorporated in the ASCE-74 (2020) guidelines, which was previously developed based on the research conducted at Western University.

Computational Fluid Dynamics Modeling Studies on Bacterial Flagellar Motion

  • Kumar, Manickam Siva;Philominathan, Pichai
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.341-348
    • /
    • 2011
  • The study of bacterial flagellar swimming motion remains an interesting and challenging research subject in the fields of hydrodynamics and bio-locomotion. This swimming motion is characterized by very low Reynolds numbers, which is unique and time reversible. In particular, the effect of rotation of helical flagella of bacterium on swimming motion requires detailed multi-disciplinary analysis. Clear understanding of such swimming motion will not only be beneficial for biologists but also to engineers interested in developing nanorobots mimicking bacterial swimming. In this paper, computational fluid dynamics (CFD) simulation of a three dimensional single flagellated bacteria has been developed and the fluid flow around the flagellum is investigated. CFD-based modeling studies were conducted to find the variables that affect the forward thrust experienced by the swimming bacterium. It is found that the propulsive force increases with increase in rotational velocity of flagellum and viscosity of surrounding fluid. It is also deduced from the study that the forward force depends on the geometry of helical flagella (directly proportional to square of the helical radius and inversely proportional to pitch).

Validation of HART II Structural Dynamics Predictions Based on Prescribed Airloads

  • Sa, Jeong-H.;You, Young-H.;Park, Jae-S.;Park, Soo-H.;Jung, Sung-N.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.349-360
    • /
    • 2012
  • In this study, the accuracy of CSD (Comprehensive Structural Dynamics) analysis on the evaluation of blade aeroelastic responses and structural loads of HART(Higher harmonic Aeroacoustic Rotor Test) II baseline rotor is assessed using a comprehensive rotorcraft dynamics code, CAMRAD II, and a nonlinear flexible multi-body dynamics analysis code, DYMORE. Considering insufficient measurement data for HART II rotor, prescribed airloads computed by a three-dimensional compressible flow solver KFLOW are used to replace the lifting-line airloads and thereby enhance the prediction capability of the comprehensive analyses. The CSD results on blade elastic deflections using the prescribed airloads indicate more oscillatory behavior than those by lifting-line based approaches, but the wave pattern becomes improved by including artificial damping into the rotor system. It is demonstrated that the structural load predictions are improved significantly by the prescribed airloads approach against the measured data, as compared with an isolated CSD analysis.

FREE SURFACE FLOW ANALYSIS BY SOROBAN GRID BASED CIP MEHTOD (Soroban grid 기반 CIP법을 이용한 자유표면 유동해석)

  • Im, H.N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.326-334
    • /
    • 2010
  • In this study, we provide a comprehensive review of the CIP(Constrained Interpolation Pro file/Cubic Interpolated Propagation) method with a pressure-based algorithm that is known as a general numerical solver for soled liquid, gas and plasmas. And also we introduce a body-fitted grid system(Soroban grid) for computation of strongly nonlinear marine hydrodynamic problems such as slamming water on deck, wave impact by green water. This grid system can keep the third-order accuracy in time and space with the help of the CIP method. The grid system consists of the straight lines and grid points. In the 2-dimensional grid case, each grid points moving in these lines like abacus - Soroban in Japanese. The length of each line can be different and the number of grid points in each line can be different. Mesh generation and searching of upstream departure point are very simple and possible to mesh-free treatment. To optimize computation of free-surface and multi-fluid flows, We adopt the C-CUP method. In most of the earlier computations, the C-CUP method was used with a staggered-grid approach. Here, because of the mesh free nature of the Soroban grid, we use the C-CUP method with a collocated-grid approach.

  • PDF

The Acoustic and Aerodynamic Aspects of Patients with Spasmodic Dysphonia (연축성 발성장애 환자의 음향학적 및 공기역학적 양상)

  • 이주환;김인섭;고윤우;오종석;배정호;윤현철;최성희;최홍식
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.11 no.1
    • /
    • pp.98-103
    • /
    • 2000
  • Background and Objectives : The etiology and pathophysiology of spasmodic dysphonia is yet unknown. This study was performed to determine if any laryngeal aerodynamic parameter distinguish the voice of patient diagnosed as having adductor spasmodic dysphonia from individuals with normal voice production and to investigate the pathophysiology of spasmodic dysphonia. Materials and Methods : fifteen women diagnosed as having adductor spasmodic dysphonia and fifteen normal control women participitated in this study Maximum phonation time, mean air flow rate, subglottic pressure, vocal efficiency, Vfo, NHR, VTI, FTRI, ATRI, Jitter percent, Shimmer percent were obtained from the participants using 'MDVP(multi-dimensional voice program)' of CSL(Computerized Speech lab, Kay Elemetrics, Co., Model No. 4300), and 'maximum sustained phonation' and 'IPIPI test' of AP II(Aerophone II, Kay Elemetrics, Co., Model 6800). Results : T-test statistical analysis revealed statistically different values for vocal efficiency, Vfo, NHR, MPT, litter percent, Shimmer percent between the spasmodic dysphonia group and the control group. Conclusions : Spasmodic dysphonia affects the ability of the laryngeal mechanism to function effectively. Results from our study demonstrate that certain aerodynamic and acoustic parameters distinguish adductor spasmodic dysphonia from normal voice.

  • PDF

Direct ECC Bypass Phenomena in the MIDAS Test Facility During LBLOCA Reflood Phase

  • B.J. Yun;T.S. Kwon;D.J. Euh;I.C. Chu;Park, W.M.;C.H. Song;Park, J.K.
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.421-432
    • /
    • 2002
  • As one of the advanced design features of the APR1400, direct vessel injection (DVI) system is being considered instead of conventional cold leg injection (CLI) system. It is known that the DVI system greatly enhances the reliability of the emergency core cooling (ECC) system. However, there is still a dispute on its performance in terms of water delivery to the reactor core during the reflood phase of a large-break loss-of-coolant accident (LOCA). Thus, experimental validation is under progress. In this paper, test results of direct ECC bypass performed in the steam-water test facility tailed MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) are presented. The test condition is determined, based on the preliminary analysis of TRAC code, by applying the ‘modified linear scaling method’with the l/4.93 length scale . From the tests, ECC direct bypass fraction, steam condensation rate and information on the flow distribution in the upper annulus downcomer region are obtained.

Aerodynamic Heating Analysis of Spike-Nosed Missile (스파이크가 부착된 유도탄의 공력 가열 해석)

  • Jung Suk Young;Yoon Sung Joon;Byon Woosik;Ahn Chang Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.21-29
    • /
    • 2004
  • Numerical analysis of aerodynamic heating for KPSAM is performed using aerodynamic heating model suitable to KPSAM, which has complex flow field resulting from the spike attached to the dome, such as large separation area and the strong shock/boundary layer interaction region around reattachment point on the dome. The aerodynamic heating model is validated and modified through the comparison between the flight test measurement and the thermal analysis results. TFD temperature sensors are installed on the dome to measure surface temperature during the flight. Computation results, obtained from the heat transfer analysis on the sensors, agree well with flight test data. The aerodynamic heating model provides heat transfer rate into surface as a boundary condition of unsteady 1D/axisymmetric thermal analysis on the missile structure. The axisymmetric thermal analysis using FLUENT is more versatile than the 1D analysis and can be applied to the heating problem related with complex structures and multi-dimensional heat transfer problems such as prediction of temperature rise at contact surface of different materials.

A Computational Study About Behavior of an Underwater Projectile and Prediction of Surficial Pressure Loading (수중 운동체의 거동 및 표면 압력하중 예측에 관한 수치적 연구)

  • Jo, Sung Min;Kwon, Oh Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.405-412
    • /
    • 2017
  • In the present study, two phase flows around a projectile vertically launched from an underwater platform have been numerically investigated by using a three dimensional multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom(6DOF) equations of motion with Euler angles and a chimera technique. The propulsive power of the projectile was modeled as the fluid force acting on the lower surface of the body by the compressed air emitted from the platform. Qualitative analysis was conducted for the time history of vapor volume fraction distributions. Uncorking pressure around the projectile and platform was analyzed to predict impact force acting on the surfaces. The results of 6DOF analysis presented similar tendency with the surficial pressure distributions.

Study on Vaporization and Combustion of Spray in High Pressure Environment (고압에서의 분무의 증발 및 연소 현상에 관한 연구)

  • Wang, Tae-Joong;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1273-1281
    • /
    • 2003
  • The present study is mainly motivated to investigate the vaporization, auto-ignition, and combustion of liquid fuel spray injected into high pressure environment. The unsteady, multi-dimensional models were used for realistic simulation of spray as well as prediction of accurate ignition delay time. The Separated Flow (SF) model which considers the finite rate of transport between liquid and gas phases was employed to represent the interactions between spray and gas field. Among the SF models, the Discrete Droplet Model (DDM) which simulates the spray using finite number of representative samples of discrete droplets was adopted. The Eulerian-Lagrangian formulation was used to analyze the two-phase interactions. In order to predict an evaporation rate of droplet in high pressure environment, the high pressure vaporization model was applied using thermodynamic equilibrium and phase equilibrium at droplet surface. The high pressure effect as well as high temperature effect was considered in the calculation of liquid and gas properties. In case of vaporization, an interaction between droplets was studied through the simulation of spray. The interaction is shown up differently whether the ambient gas field is at normal pressure or high pressure. Also, the characteristics of spray behavior in high pressure environment were investigated through the comparison with normal ambient pressure case. In both cases, the spray behaviors are simulated through the distributions of temperature and reaction rate in gas field.