• Title/Summary/Keyword: Multi-dimensional design

Search Result 566, Processing Time 0.024 seconds

Simulation Technology of 3D Fabrics (3차원 입체 직물의 시뮬레이션 기술)

  • Park, Jung Hyun
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.214-224
    • /
    • 2019
  • This investigation reported the simulation technologies to design the 3-dimensional fabrics such as 3 dimensional multi-layered fabric, 3 dimensional braided fabric and spacer fabric. The simulation system or software has been actively used to develop products of 3 dimensional fabric which can be reduced development costs and time. Thus, many countries such as Japan, Germany, China, and U.K. show great interests on simulation technologies for developing new materials and processes including 3 dimensional fabric field. In this study, simulation systems have been reviewed for the 3 dimensional fabric design system from Mikawa Textile Research Center, Japan; ProCad and ProFab from Karl Mayer and Texion, Germany; xComposites from China; TexGen from Nottingham University, U.K.; TexPro from Young Woo CnI, Korea, respectively.

Development of Intermediate Die Shape Design Program for Multi-Pass Shape Drawing by Using VisualLISP (VisualLISP을 이용한 다단이형인발 중간패스 단면형상설계 프로그램 개발)

  • Lee, S.K.;Lee, S.B.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.242-247
    • /
    • 2010
  • In the multi-pass shape drawing process, it is important to design the intermediate dies for producing sound products. Up to now, the design of the intermediate dies is mainly carried out by the industrial experts based on their experience. In this study, a design program was developed to design the intermediate dies for multi-pass shape drawing process. The program was programmed by using VisualLISP. In this program the intermediate dies can be designed by using the initial material shape and the final product shape. In order to verify the effectiveness, the program was applied to design the intermediate dies of multi-pass shape drawing for producing four teeth spline and gun slide. Finally, FE analysis and shape drawing experiment were performed to verify the effectiveness of the designed intermediate dies. As a result, it was possible to produce the drawn products with the required dimensional accuracy.

Design Appreciation at IDAS - an multi-dimensional approach

  • Ming, Leung;Santina, Bonini
    • Proceedings of the Korea Society of Design Studies Conference
    • /
    • 1999.05a
    • /
    • pp.60-61
    • /
    • 1999
  • Design appreciation is a once a week 16 week course Primarily it is a series of presentation and discussion about product design, aiming at increasing the awareness of design among students, and stimulating their own work.(omitted)

  • PDF

Sufficient Conditions for Compatibility of Unequal-replicate Component Designs

  • Park, Dong-Kwon
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.2
    • /
    • pp.513-522
    • /
    • 1994
  • A multi-dimensional design is most easily constructed via the amalgamation of one-dimensional component block designs. However, not all sets of component designs are compatible to be amalgamated. The conditions for compatibility are related to the concept of a complete matching in a graph. In this paper, we give sufficient conditions for unequal-replicate designs. Two types of conditions are proposed; one is based on the number of verices adjacent to at least one vertex and the other is ona a degree of vertex, in a bipartite graph. The former is an extension of the sufficient conditions of equal-replicate designs given by Dean an Lewis (1988).

  • PDF

A Fully Optimized Electrowinning Cell for Achieving a Uniform Current Distribution at Electrodes Utilizing Sampling-Based Sensitivity Approach

  • Choi, Nak-Sun;Kim, Dong-Wook;Cho, Jeonghun;Kim, Dong-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.641-646
    • /
    • 2015
  • In this paper, a zinc electrowinning cell is fully optimized to achieve a uniform current distribution at electrode surfaces. To effectively deal with an electromagnetically coupled problem with multi-dimensional design variables, a sampling-based sensitivity approach is combined with a highly tuned multiphysics simulation model. The model involves the interrelation between electrochemical reactions and electromagnetic phenomena so as to predict accurate current distributions in the electrowinning cell. In the sampling-based sensitivity approach, Kriging-based surrogate models are generated in a local window, and accordingly their sensitivity values are extracted. Such unique design strategy facilitates optimizing very complicated multiphysics and multi-dimensional design problems. Finally, ten design variables deciding the electrolytic cell structure are optimized, and then the uniformity of current distribution in the optimized cell is examined through the comparison with existing cell designs.

Preliminary Mechanism Design of Multi-Stage Gear Drives by Using a Fuzzy Expert System (퍼지 전문가 시스템을 이용한 다단 기어장치 메커니즘의 초기 설계)

  • 이호영;정태형;배인호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.185-192
    • /
    • 2003
  • This paper proposes an efficient mechanism design system of multi-stage gear drives including not only parallel shaft gears but also non-parallel gears such as bevel and worm gear drives. The system automatically generates three dimensional structures of specification-adjusted mechanisms, and shows the sorted list of the mechanisms according to the evaluation result by using a fuzzy expert system. The list can be used as reliable candidates of the spatial mechanism structures of multi-stage gear drives. Thus, it is expected that the system can increase the efficiency of design and cut off the expenses of preliminary design considerably.

AERODYNAMIC OPTIMIZATION OF MULTI-ELEMENT AIRFOILS FOR LIFT ENHANCEMENT (다중 익형 주위의 고양력을 위한 위치 최적화)

  • Lee, Dae-Il;Choi, Byung-Chul;Park, Young-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.441-446
    • /
    • 2011
  • To investigate aerodynamic performance of high-lift devices, 2D design is the base of the success of high-lift system design for transport aircraft, which can shorten the periods of three-dimensional design and analysis. For the simulation coupled viscous and inviscous euler method (MSES) is used. In this parametric study, Gap and Overlap which can define position of flap is used as design variables and we investigale relation between angle of attack and flap position for lift enhancement.

  • PDF

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (II-Experimental study)

  • He, Xiao-Yu;Zhao, Tie-Wei;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Based on the change of traditional viscoelastic damper structure, a brand-new damper is designed to control simultaneously the translational vibration and the rotational vibration for platforms. Experimental study has been carried out on the mechanical properties of viscoelastic material and on its multi-dimensional seismic response control effect of viscoelastic damper. Three types of viscoelastic dampers with different shapes of viscoelastic material are designed to test the influence of excited frequency, strain amplitude and ambient temperature on the mechanical property parameters such as circular dissipation per unit, equivalent stiffness, loss factor and storage shear modulus. Then, shaking table tests are done on a group of single-storey platform systems containing one symmetric platform and three asymmetric platforms with different eccentric forms. Experimental results show that the simulation precision of the restoring force model is rather good for the shear deformation of viscoelastic damper and is also satisfied for the torsion deformation and combined deformations of viscoelastic damper. The shaking table tests have verified that the new-type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform.

Dimensional Accuracy of Cylindrical Cups in Multi-Stage Drawing of Aluminum Sheet Metal (알루미늄 판재의 다단계 드로잉에 있어서 원통컵의 치수 정밀도 비교)

  • Choi, J.M.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.115-120
    • /
    • 2015
  • Deep drawing of cylindrical cups is one of the most fundamental and important processes in sheet metal forming. Circular cups are widely used in industrial fields such as automobile and electronic appliances. Some of these cups are formed by a one-stage process, others such as battery cases and beverage cans are made by a multi-stage process. In the current study the multi-stage deep drawing of aluminum sheet metal is examined. The process consists of two deep drawing operations followed by two ironing operations. The press die, which can be used for the four-stage forming process, was manufactured allowing punch and die components to be easily changed for various experiments. The rolling direction of both the sheet and the drawn cups was always positioned toward the horizontal x-direction on the die face to minimize experimental errors during the progressive forming. The dimensional accuracy of the cylindrical cups formed at each stage and the earing defect due to the anisotropy of sheet were investigated. The influence of anisotropy on the thickness distribution was also examined. Both the thickness and the outer diameter of the cups were measured and compared for each set of experimental conditions. It was found that the dimensional accuracy of cups rapidly improves by employing the ironing process and also by increasing the amount of ironing.

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (I-Theoretical analysis)

  • He, Xiao-Yu;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.157-174
    • /
    • 2016
  • Based on classical viscoelastic damper, a brand-new damper is designed by the change of simple construction to implement vibration control for both translational vibration and rotational vibration simultaneously. Theoretic analysis has been carried out on the restoring force model and the control parameters. Two improved models are presented to obtain high simulation precision. The influence of the size, shape of the viscoelastic material, the ambient temperature and the response frequency on the vibration control effect is analyzed. The numerical results show that the new type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform and the response control effect has complicated relations with aforementioned related factors.