• 제목/요약/키워드: Multi-dimensional Model

검색결과 813건 처리시간 0.032초

A Study on Building Trust in Mobile Payment System -Focused on Developing Hierarchical Trust Model- (모바일 간편 결제 시스템의 신뢰형성에 대한 연구 -계층적 신뢰모형 개발을 중심으로-)

  • Choi, Yoo-Jung;Choi, Hun
    • Management & Information Systems Review
    • /
    • 제35권3호
    • /
    • pp.23-36
    • /
    • 2016
  • As a new alternative to cash and credit-cards, mobile payment has been attracting world's attention. Although fin-tech, a mobile payment system provider, has been a rising issue, mobile payment systems is not yet widely used domestically. Because trust is the most important element in revitalizing the mobile payment system, we hoped to develop a hierarchical trust model to analyze the multi-dimensional trust factor. In this study, surveys were conducted to identify the components that affect the overall trust of a mobile payment system. It has been concluded that cognitive trust, affective trust, trust in system quality affect the overall trust of the system, and this trust affects the continuance intention of users.

  • PDF

Flow Structure Around a Rectangular Prism Placed in a Thick Turbulent Boundary Layer (두꺼운 난류경계층 내부에 놓인 직사각형 프리즘 주위의 유동구조)

  • Kim, Gyeong-Cheon;Ji, Ho-Seong;Chu, Jae-Min;Lee, Seok-Ho;Seong, Seung-Hak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제26권4호
    • /
    • pp.578-586
    • /
    • 2002
  • Flow structures around a rectangular prism have been investigated by using a PIV(Particle Image Velocimetry) technique. A thick turbulent boundary layer was generated by using spires arid roughness elements. The boundary layer thickness, displacement thickness and momentum thickness were 650mm, 117.4mm and 78mm, respectively. The ratio between the model height(40mm) and the boundary layer thickness H/$\delta$, was 0.06. The Reynolds number based on the free stream velocity and the height of the model was 7.9$\times$10$^3$. The PIV measurements were performed at three different wall normal planes. Three recirculation regions at forward facing step, top of the roof and backward facing step are clearly seen and show three dimensional features. Dramatic changes of flow patterns are observed in the wake regions in the different spanwise wall normal planes. Instead of reattachment and recirculation zone, rising streamlines are depicted at the normal planes near the side wall due to the interaction with a rising horse shoe vortex. The peak of turbulent kinetic energy occurs at the separation bubble on top of the roof and the magnitude is 2.5 times higher compared with that of the wake region.

Relationship of the Thermal Stratification and Critical Flow Velocity Near the Baekje Weir in Geum River (금강 백제보 구간 수온성층 형성과 임계유속 관계)

  • Kim, Dong-min;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Korean Society on Water Environment
    • /
    • 제33권4호
    • /
    • pp.449-459
    • /
    • 2017
  • In Geum River of Korea, three multi-purpose weirs were built at the downstream of Daecheong Reservoir during the Four Major River Restoration Project (FMRRP). The weirs have altered the hydraulic characteristics of the river, and consequently transformed the large areas of flowing ecosystem to deep and wide stagnant environment. In every summer, a thermal stratification occurred near the Baekje Weir having mean depth of 4.0 m, and the surface algal blooms dominated by buoyant cyanobacteria have been frequently formed after the FMRRP. The objective of this study was to investigate the relationship between flow velocity and thermal stability of the waterbody using a three-dimensional (3D) hydrodynamic model (EFDC+) after calibration against the thermistor chain data obtained in 2014. A new Sigma-Zed vertical grid system of EFDC+ that minimize the pressure gradient errors was used to better simulate the thermodynamics of the waterbody. The model reasonably simulated the vertical profiles of the observed water temperatures. The vertical mean flow velocity and the Richardson Number (Ri) that represents the stability of waterbody were estimated for various management water levels and flow rates scenarios. The results indicated that the thermal stability of the waterbody is mostly high ($Ri{\gg}0.25$) enough to establish stratification, and largely depend on the flow velocity. The critical flow velocity that can avoid a persistent thermal stratification was found to be approximately 0.1 m/s.

A Numerical Study on the Open Channel Flow with Plane Wall Jet Inlet Boundary Condition (평면벽면분류의 유입경계조건을 가지는 개수로 유동에 관한 수치적 연구)

  • 설광원;이상룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제13권2호
    • /
    • pp.287-298
    • /
    • 1989
  • A numerical work was performed to study the flow behaviors of the open channel type flow with its geometric boundary conditions being similar to that of the Multi-Stage-Flash evaporator with and without a baffle. For the analysis, two-dimensional steady turbulent flow was assumed and the widely known k-.epsilon. turbulence model was usded. SIMPLE algorithm and the power difference scheme were used for the numerical approach. Numerical results generally agree with the previous experimental results though there are some uncertainties at far downstream and near the free surface due to the three dimensionality of the flow and surface waves. Without a baffle, the flow has basically the shape of the submerged plane wall jet with its upper boundary at downstream being sharply curved toward the free surface. For the flow with a baffle, recirculation flow patterns are observed at the upper inlet portion and at the backside of the baffle. For the case without a baffle, it was also confirmed that the ratio between the liquid level and the gate opening height is the most important parameter to determine the flow behavior.

A Study on the Elements Analysis according for the Development Characteristics of the Augmented Reality Toy-Games (증강현실 토이게임의 개발 특징에 따른 요소 분석 연구)

  • Song, Hyun-Joo;No, Hae-Sun;Rhee, Dae-Woong
    • Journal of Korea Game Society
    • /
    • 제17권6호
    • /
    • pp.51-62
    • /
    • 2017
  • The augmented reality toy-game is a kind of new game genre that can be seen within the concept of augmented reality games, and it is a term to refer to the content or hardware that plays the game using the toy of the real world. This study aims to analyze the elements for the model of toy-game development based on the augmented reality. This study analyzed three characteristics of toy game which are different from other games based on existing related research. and have selected important factors to consider when developing augmented reality toy-game. A questionnaire was conducted to determine the suitability of the development elements derived, and the analysis and verification of the factors derived using an exploratory analysis method. As a result, it showed a reasonable outcome of the selection of variables, with the exception of some of the questions, and the classification results of the multi-dimensional scaling methods were also classified as reasonable in the clustering analyses.

Multiaspect-based Active Sonar Target Classification Using Deep Belief Network (DBN을 이용한 다중 방위 데이터 기반 능동소나 표적 식별)

  • Kim, Dong-wook;Bae, Keun-sung;Seok, Jong-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제22권3호
    • /
    • pp.418-424
    • /
    • 2018
  • Detection and classification of underwater targets is an important issue for both military and non-military purposes. Recently, many performance improvements are being reported in the field of pattern recognition with the development of deep learning technology. Among the results, DBN showed good performance when used for pre-training of DNN. In this paper, DBN was used for the classification of underwater targets using active sonar, and the results are compared with that of the conventional BPNN. We synthesized active sonar target signals using 3-dimensional highlight model. Then, features were extracted based on FrFT. In the single aspect based experiment, the classification result using DBN was improved about 3.83% compared with the BPNN. In the case of multi-aspect based experiment, a performance of 95% or more is obtained when the number of observation sequence exceeds three.

Mathematical model for reactive transport of heavy metals in soil column: Based on PHREEQC and HP1 simulators

  • Tameh, Fatemeh Izadi;Asadollahfardi, Gholamreza;Darban, Ahmad Khodadadi
    • Advances in environmental research
    • /
    • 제6권1호
    • /
    • pp.67-81
    • /
    • 2017
  • Mining activities play a significant role in environmental pollution by producing large amounts of tailings which comprise heavy metals. The impressive increase in mining activities in recent decades, due to their high influence on the industry of developing countries, duplicates the need for a substantial effort to develop and apply efficient measures of pollution control, mitigation, and abatement. In this study, our objective was to investigate the effect of simulation of the leachate, pH and inflow intensity of transport of $Pb^{2+}$, $Zn^{2+}$, and $Cd^{2+}$ through Lakan lead and zinc plant tailings, in Iran, and to evaluate the modeling efficiency by comparing the modeling results and the results obtained from previous column studies. We used the HP1 model and the PHREEQC database to simulate metals transport through a saturated soil column during a 15 day time period. The simulations assumed local equilibrium. As expected, a lower pH and inflow intensity increased metal transport. The retardation of heavy metals followed the order $Zn^{2+}$ > $Pb^{2+}$ > $Cd^{2+}$ and the removal concentrations of Cd, Pb, and Zn at the inflow intensity critical scenario, and Cd and Pb at inflow acidity critical scenario exceeded the allowable EPA and Iranian's 1053 standard thresholds. However, although the simulation results generally agreed well with the results of the column study, improvements are expected by using multi-dimensional models and a kinetic modeling approach for the reactions involved. The results of such investigations will be highly useful for designing preventative strategies to control reactive transport of hazardous metals and minimize their environmental effects.

A Standardized River Data Model Based on River Network for Building Multi-dimensional River Information System (다차원 하천 정보 체계 구축 위한 하천네트워크 기반 표준 하천 데이터 모델 개발)

  • Choi, Seoung Soo;Kim, Dongsu;You, Hojun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2017년도 학술발표회
    • /
    • pp.177-177
    • /
    • 2017
  • 최근 ADCP 등 첨단장비를 활용한 유량 및 하상측정, 각종 하천기본계획 수립 시 확보되는 횡단측정 자료, 식생 및 서식처 등 하천환경과 생태자료, 드론 등을 활용한 영상자료 등 방대한 하천 정보가 확보되고 있으며, 다기능보 등 다양한 하천구조물 및 친수구역이 증가하는 등 이전과 비교하여 괄목할만한 수준으로 정보의 양이 증가하고 있다. 이에 따라 다양한 하천정보를 체계적으로 저장, 관리, 공유하기 위하여 표준화된 데이터 모델(Data Model)의 수립이 필요하다. 하천 정보의 경우 하천 시설물, 하천 단면측량 자료, 하천 시계열 측정 자료 등이 특정 하천을 중심으로 관리되는 반면, 기존 데이터 모델 연구에서는 특정 주제도에 기반하여 하천 정보가 레이어 형식으로 제공되어 상호 연계되지 않아 하천 정보의 효율적 관리측면에서 적합하지 않았다. 또한 신규 정보를 추가 시 기존 데이터 모델의 과다한 수정이 필요하고, 기존의 데이터 모델의 경우 표준화되지 않아 활용성이 매우 낮고, 유역중심으로 구성되어 특정 조건에 해당되는 하천 정보 검색이 어려운 단점이 존재하였다. 본 연구에서는 기존의 주제도 및 레이어 형식으로 구성되어 있던 데이터 모델 형식에서 벗어나 하천흐름선을 기준으로 데이터모델을 구축하는 방안을 제시하였으며, 하천흐름선과 하천 시설물, 단면 측량 자료, 계측 자료를 순차적으로 수용하고, 기존에 존재하지 않던 하천 정보의 추가 시 기존 데이터 모델의 형식을 수정하지 않고 유연하게 대응할 수 있는 관계형 데이터 모델을 구상하였다. 또한, 하천과 유역의 논리적 저장방안 고려하여 한 개의 하천을 다수의 세그먼트(Reach)로 구분하여 코드(Reach Code)를 부여하는 방안을 제시하였으며, 구상한 데이터모델을 통하여 국가하천과 지방하천 등 유역의 다양성을 포함하는 한강권역의 섬강유역을 시범하천으로 구축하였다. 제시된 하천 정보 데이터 모델을 활용하여 DB를 구축한다면 하천망을 기준으로 하천 정보가 저장되고, 기존의 유역단위의 하천 정보 제공 방식에서 하천과 유역을 모두 포함하여 검색 가능한 시스템을 구축하여 하천 정보의 관리와 제공이 수월해질 것으로 기대된다.

  • PDF

Case study of random vibration analysis of train-bridge systems subjected to wind loads

  • Zhu, Siyu;Li, Yongle;Togbenou, Koffi;Yu, Chuanjin;Xiang, Tianyu
    • Wind and Structures
    • /
    • 제27권6호
    • /
    • pp.399-416
    • /
    • 2018
  • In order to reveal the independent relationship between track irregularity and wind loads, the stochastic characteristics of train-bridge coupling systems subjected to wind loads were investigated by the multi-sample calculation. The vehicle was selected as 23 degrees of freedom dynamical model, and the bridge was described by three-dimensional finite element model. It was assumed that the wind loads were random processes with strong spatial correlation, while the track irregularities were stationary random ones. As a case study, a high-speed train running on a cable-stayed bridge subjected to wind loads was studied. The effect of rail irregularities was deemed to be independent of the effect of wind excitations on the coupling system in the same wind circumstance for the same project, leading to the conclusion that the effect of wind loads and moving vehicle could be calculated separately. The variance results of the stochastic responses of vehicle-bridge coupling system under the action of wind loads and rail irregularities together were equivalent to the sum of the variance of the responses induced by each excitation. Therefore, when one of the input excitations is different, only the effect of changed loads needs to be assessed. Moreover, the new calculated results were combined with the effect of unchanged loads to present the stochastic response of coupling system subjected to the different excitations, reducing the cost of computations. The stochastic characteristics, the CFD (cumulative distribution function) of the coupling system with different wind velocities, vehicle speed, and vehicle marshalling were studied likewise.

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • 제14권6호
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.