• Title/Summary/Keyword: Multi-criteria Decision Method

Search Result 196, Processing Time 0.027 seconds

The study of the safety evaluation method on domestic subway using multi-criteria decision analysis (다기준 의사결정기법을 이용한 국내 지하철 안전성 평가 적용에 관한 연구)

  • Park, Hai-Chun;Lee, Kyoung-Hun
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.3
    • /
    • pp.19-28
    • /
    • 2011
  • The efforts to reduce industrial accident has been brisk recently in workplace. These efforts were mainly concentrated on construction and manufacturing. Despite these efforts, current accident rate so far has been maintained on the fixed level. According to the change of industrial structure, the government's attention on industrial accident prevention activities are focused in service industries. When trying to appraise the result of such activities, it is impossible to evaluate safety without certain criteria. Therefore, we analyze data by TOPSIS method that all the subway institution jointly manage every year. we decide the order of safety priority between domestic subway workplaces and measure the variation in safety by sensitivity. As a result, we draw conclusions to improve safety for the primary consideration and suggest alternatives.

Developing a comprehensive model of the optimal exploitation of dam reservoir by combining a fuzzy-logic based decision-making approach and the young's bilateral bargaining model

  • M.J. Shirangi;H. Babazadeh;E. Shirangi;A. Saremi
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.65-76
    • /
    • 2023
  • Given the limited water resources and the presence of multiple decision makers with different and usually conflicting objectives in the exploitation of water resources systems, especially dam's reservoirs; therefore, the decision to determine the optimal allocation of reservoir water among decision-makers and stakeholders is a difficult task. In this study, by combining a fuzzy VIKOR technique or fuzzy multi-criteria decision making (FMCDM) and the Young's bilateral bargaining model, a new method was developed to determine the optimal quantitative and qualitative water allocation of dam's reservoir water with the aim of increasing the utility of decision makers and stakeholders and reducing the conflicts among them. In this study, by identifying the stakeholders involved in the exploitation of the dam reservoir and determining their utility, the optimal points on trade-off curve with quantitative and qualitative objectives presented by Mojarabi et al. (2019) were ranked based on the quantitative and qualitative criteria, and economic, social and environmental factors using the fuzzy VIKOR technique. In the proposed method, the weights of the criteria were determined by each decision maker using the entropy method. The results of a fuzzy decision-making method demonstrated that the Young's bilateral bargaining model was developed to determine the point agreed between the decisions makers on the trade-off curve. In the proposed method, (a) the opinions of decision makers and stakeholders were considered according to different criteria in the exploitation of the dam reservoir, (b) because the decision makers considered the different factors in addition to quantitative and qualitative criteria, they were willing to participate in bargaining and reconsider their ideals, (c) due to the use of a fuzzy-logic based decision-making approach and considering different criteria, the utility of all decision makers was close to each other and the scope of bargaining became smaller, leading to an increase in the possibility of reaching an agreement in a shorter time period using game theory and (d) all qualitative judgments without considering explicitness of the decision makers were applied to the model using the fuzzy logic. The results of using the proposed method for the optimal exploitation of Iran's 15-Khordad dam reservoir over a 30-year period (1968-1997) showed the possibility of the agreement on the water allocation of the monthly total dissolved solids (TDS)=1,490 mg/L considering the different factors based on the opinions of decision makers and reducing conflicts among them.

Seismic induced damageability evaluation of steel buildings: a Fuzzy-TOPSIS method

  • Shahriar, Anjuman;Modirzadeh, Mehdi;Sadiq, Rehan;Tesfamariam, Solomon
    • Earthquakes and Structures
    • /
    • v.3 no.5
    • /
    • pp.695-717
    • /
    • 2012
  • Seismic resiliency of new buildings has improved over the years due to better seismic codes and design practices. However, there is still large number of vulnerable and seismically deficient buildings. It is not economically feasible to retrofit and upgrade all vulnerable buildings, thus there is a need for rapid screening tool. Many factors contribute to the damageability of buildings; this makes seismic evaluation a complex multi-criteria decision making problem. Many of these factors are noncommensurable and involve subjectivity in evaluation that highlights the use of fuzzy-based method. In this paper, a risk-based framework earlier proposed by Tesfamariam and Saatcioglu (2008a) is extended using Fuzzy-TOPSIS method and applied to develop an evaluation and ranking scheme for steel buildings. The ranking is based on damageability that can help decision makers interpret the results and take appropriate decision actions. Finally, the application of conceptual model is demonstrated through a case study of 1994 Northridge earthquake data on seismic damage of steel buildings.

Knowledge Based New POI Recommendation Method in LBS Using Geo-Ontology and Multi-Criteria Decision Analysis

  • Joo, Yong-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.13-20
    • /
    • 2011
  • LBS services is a user-centric location based information service, where its importance has been discussed as an essential engine in an Ubiquitous Age. We aimed to develop an ontology reasoning system that enables users to derive recommended results suitable through selection standard reasoning according to various users' preferences. In order to achieve this goal, we designed the Geo-ontology system which enabled the construction of personal characteristics of users, knowledge on personal preference and knowledge on spatial and geographical preference. We also integrated a function of reasoning relevant information through the construction of Cost Value ontology using multi-criteria decision making by giving weight according to users' preference.

Cell Selection Method using Multi-Criteria Decision Making in Heterogeneous Networks (이종 망에서 퍼지 다기준 의사 결정을 이용한 셀 선정 방법)

  • Lee, Jong-Chan;Park, Sang-Joon
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • It is essential to maintain constant QoS despite of cell overload or erroneous wireless link during transmission because QoS of a multimedia service may be severely degraded by small delay or packet loss. This paper deals with a cell selection method for supporting the QoS of multimedia services over heterogeneous networks. The proposed scheme is based on Fuzzy Multi-Criteria Decision Making (FMCDM), in which uncertain parameters such as user system preference, the communication cost and cell load, and the transmission delay are used in the decision process using the aggregation function in fuzzy set theory. In this scheme, errors in the evaluation parameters impose milder changes on the total evaluation value than in binary logics. Simulation is focused on the average delay and packet loss rate, and the simulation results show that our proposed method provides mobile terminals the optimal performance.

  • PDF

A patent analysis method for identifying core technologies: Data mining and multi-criteria decision making approach (핵심 기술 파악을 위한 특허 분석 방법: 데이터 마이닝 및 다기준 의사결정 접근법)

  • Kim, Chul-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.1
    • /
    • pp.213-220
    • /
    • 2014
  • This study suggests new approach to identify core technologies through patent analysis. Specially, the approach applied data mining technique and multi-criteria decision making method to the co-classification information of registered patents. First, technological interrelationship matrices of intensity, relatedness, and cross-impact perspectives are constructed with support, lift and confidence values calculated by conducting an association rule mining on the co-classification information of patent data. Second, the analytic network process is applied to the constructed technological interrelationship matrices in order to produce the importance values of technologies from each perspective. Finally, data envelopment analysis is employed to the derived importance values in order to identify priorities of technologies, putting three perspectives together. It is expected that suggested approach could help technology planners to formulate strategy and policy for technological innovation.

A Desirability Function-Based Multi-Characteristic Robust Design Optimization Technique (호감도 함수 기반 다특성 강건설계 최적화 기법)

  • Jong Pil Park;Jae Hun Jo;Yoon Eui Nahm
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.199-208
    • /
    • 2023
  • Taguchi method is one of the most popular approaches for design optimization such that performance characteristics become robust to uncontrollable noise variables. However, most previous Taguchi method applications have addressed a single-characteristic problem. Problems with multiple characteristics are more common in practice. The multi-criteria decision making(MCDM) problem is to select the optimal one among multiple alternatives by integrating a number of criteria that may conflict with each other. Representative MCDM methods include TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution), GRA(Grey Relational Analysis), PCA(Principal Component Analysis), fuzzy logic system, and so on. Therefore, numerous approaches have been conducted to deal with the multi-characteristic design problem by combining original Taguchi method and MCDM methods. In the MCDM problem, multiple criteria generally have different measurement units, which means that there may be a large difference in the physical value of the criteria and ultimately makes it difficult to integrate the measurements for the criteria. Therefore, the normalization technique is usually utilized to convert different units of criteria into one identical unit. There are four normalization techniques commonly used in MCDM problems, including vector normalization, linear scale transformation(max-min, max, or sum). However, the normalization techniques have several shortcomings and do not adequately incorporate the practical matters. For example, if certain alternative has maximum value of data for certain criterion, this alternative is considered as the solution in original process. However, if the maximum value of data does not satisfy the required degree of fulfillment of designer or customer, the alternative may not be considered as the solution. To solve this problem, this paper employs the desirability function that has been proposed in our previous research. The desirability function uses upper limit and lower limit in normalization process. The threshold points for establishing upper or lower limits let us know what degree of fulfillment of designer or customer is. This paper proposes a new design optimization technique for multi-characteristic design problem by integrating the Taguchi method and our desirability functions. Finally, the proposed technique is able to obtain the optimal solution that is robust to multi-characteristic performances.

Decision Making Model for Agricultural Reservoir using PROMETHEE-AHP (PROMETHEE-AHP를 이용한 농업용 저수지의 의사결정모형)

  • Choi, Eun-Hyuk;Bae, Sang-Soo;Jee, Hong-Kee
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.57-67
    • /
    • 2012
  • This paper presents the Multi Criteria Decision Making (MCDM) to evaluate water resources plan for agricultural reservoir. Preference Ranking Organization METHod for Enrichment Evaluations (PROMETHEE) and Analytic Hierarchy Process (AHP) were used to estimate weight and priority of alternatives to find out the most reasonable and efficient way of water resources assessment. The 6 criteria that both decision maker and beneficiary are satisfied have been identified to secure agricultural water resources and then the priority of 10 subcriteria was set. An enhanced PROMETHEE-AHP model was used to perform pairwise comparison and find out the priority of each alternative because the existing decision making model have uncertainty and ambiguity. Comparison analysis of decision making models was carried out to find a way of suitable decision making and validity of PROMETHEE-AHP model was suggested.

Dominance, Potential Optimality, and Strict Preference Information in Multiple Criteria Decision Making

  • Park, Kyung-Sam;Shin, Dong-Eun
    • Management Science and Financial Engineering
    • /
    • v.17 no.2
    • /
    • pp.63-84
    • /
    • 2011
  • The ordinary multiple criteria decision making (MCDM) approach requires two types of input, alternative values and criterion weights, and employs two schemes of alternative prioritization, dominance and potential optimality. This paper allows for incomplete information on both types of input and gives rise to the dominance relationships and potential optimality of alternatives. Unlike the earlier studies, we emphasize that incomplete information frequently takes the form of strict inequalities, such as strict orders and strict bounds, rather than weak inequalities. Then the issues of rising importance include: (1) The standard mathematical programming approach to prioritize alternatives cannot be used directly, because the feasible region for the permissible decision parameters becomes an open set. (2) We show that the earlier methods replacing the strict inequalities with weak ones, by employing a small positive number or zeroes, which closes the feasible set, may cause a serious problem and yield unacceptable prioritization results. Therefore, we address these important issues and develop a useful and simple method, without selecting any small value for the strict preference information. Given strict information on both types of decision parameters, we first construct a nonlinear program, transform it into a linear programming equivalent, and finally solve it via a two-stage method. An application is also demonstrated herein.

An Evaluation of Priority for the Green Energy Technologies Business (그린에너지기술 사업화를 위한 우선순위 평가)

  • Lee, Deokki;Hong, Jong-Chul;Park, Soo-Uk;Baik, Keum Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.135.2-135.2
    • /
    • 2011
  • The goal of this study is the derivation of priority for business in the areas of green energy technologies. In this paper, we calculated the importance weights of impact factors using the AHP (Analytic Hierarchy Process) method in order to derivation of priority to the green energy technologies business. AHP is a useful method for evaluating multi-criteria decision making problems. To apply the AHP method, specialists for the assessment have been identified by using the concept of 'plan, do, see' and the decision-making hierarchy was established. We selected 5 criteria and 16 sub-criteria for impact factors by brainstorming. According to the result in this study, the most important impact factor is the possibility of commercialization, the second is the possibility of developing the fundamental technology, and the third is the possibility of convergence technology.

  • PDF