• Title/Summary/Keyword: Multi-correlation regions

Search Result 48, Processing Time 0.023 seconds

Depth Generation Method Using Multiple Color and Depth Cameras (다시점 카메라와 깊이 카메라를 이용한 3차원 장면의 깊이 정보 생성 방법)

  • Kang, Yun-Suk;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.13-18
    • /
    • 2011
  • In this paper, we explain capturing, postprocessing, and depth generation methods using multiple color and depth cameras. Although the time-of-flight (TOF) depth camera measures the scene's depth in real-time, there are noises and lens distortion in the output depth images. The correlation between the multi-view color images and depth images is also low. Therefore, it is essential to correct the depth images and then we use them to generate the depth information of the scene. The results of stereo matching based on the disparity information from the depth cameras showed the better performance than the previous method. Moreover, we obtained the accurate depth information even at the occluded or textureless regions which are the weaknesses of stereo matching.

An Improved Theoretical Model to Explain Electronic and Optical Properties of p-Type GaAs/AlGaAs Superlattices for Multi-Wavelength Normal Incidence Photodetectors

  • Kim, Byoung-Whi;Choi, Eun-Chang;Park, Kwon-Chul;Kang, Seok-Youl
    • ETRI Journal
    • /
    • v.18 no.4
    • /
    • pp.315-338
    • /
    • 1997
  • We extend our previous theoretical analysis of electronic and optical properties of p-type quantum well structures based on the two heavy- and light-hole system to include all the three valence bands. These theories are then used to clarify the origin of the normal incidence absorption and photo current at photon wavelengths of 2 - 3 ${\mu}m$, which was observed in addition to the absorption around 8 ${\mu}m$ by a recent experimental investigation with heavily doped p-type GaAs/AlGaAs multi-quantum well (MQW) structures. In the theoretical analysis, the Hartree and exchange-correlation many-body interactions are taken into account within one-particle local density approximation, and it is shown that normal incidence absorption occurs in two wavelength regions over the transition energy range higher than barrier height for p-type GaAs/AlGaAs superlattices with well doping of $2{\times}10^{19}\;cm^{-3}$; one region has broad absorption peaks with coefficients of about 5000 $cm^{-1}$ around 8 ${\mu}m$, and the other has two rather sharp peaks at 2.7 ${\mu}m$ and 3.4 ${\mu}m$ with 1800 $cm^{-1}$ and 1300 $cm^{-1}$, respectively. The result indicates that the theory explains the experimental observation well, as the theoretical and experimental results are in close agreement in general absorption features.

  • PDF

Research of Matching Performance Improvement for DEM generation from Multiple Images (다중 영상으로부터 DEM 생성을 위한 정합기법의 성능향상 연구)

  • Rhee, Soo-Ahm;Kim, Tae-Jung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.101-109
    • /
    • 2011
  • This paper describes the attempts to improve the performance of an image matching method for multiple image. Typically, matching between two images is performed by using correlation between a reference and corresponding images. The proposed multiple image matching algorithm performs matching in an object space, chooses the image closest to the true vertical image as a reference image, calculates the correlation based on the chosen reference image. The algorithm also detects occluded regions automatically and keep them from matching. We could find that it is possible to create high quality DEM by this method, regardless of the location of image. From the performance improvement experiments through the occlusion detection, we could confirm the possibility of a more accurate representation of 3D information.

Study on small resistance regions in post-liquefaction shear deformation based on soil's compressive properties

  • Jongkwan Kim;Jin-Tae Han;Mintaek Yoo
    • Geomechanics and Engineering
    • /
    • v.36 no.3
    • /
    • pp.295-301
    • /
    • 2024
  • Understanding the post-liquefaction shear behavior is crucial for predicting and assessing the damage, such as lateral flow, caused by liquefaction. Most studies have focused on the behavior until liquefaction occurs. In this study, we performed undrained multi-stage tests on clean sand, sand-silt mixtures, and silty soils to investigate post-liquefaction shear strain based on soil compressibility. The results confirmed that it is necessary to consider the soil compressibility and the shape of soil particles to understand the post-liquefaction shear strain characteristics. Based on this, an index reflecting soil compressibility and particle shape was derived, and the results showed a high correlation with post-liquefaction small resistance characteristic regardless of soil type and fine particle content.

Trends and Effect of foreign Direct Investment in Fashion Industry (패션산업에서 해외직접투자 -무역과의 관계를 중심으로-)

  • 손미영;이은영;김하나
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.910
    • /
    • pp.1341-1350
    • /
    • 2004
  • With the advent of the globalization trend of the industry, the enterprises in the fashion industry around the world have witnessed a surge in exports and foreign direct investment (FDI). Many fashion enterprises in each country, along with the multi-national enterprises, have engaged in global outsourcing of the production process in order to increase their global competitiveness, and have attempted to expand their commercial presence in the world market by entering into other foreign markets. Such market entry attempts have lead to the increase of FDI and trade by the fashion enterprises. This study attempts to examine the interactive relation between FDI and export/import of fashion products in different fashion industries both worldwide and in Korea. First, we will look into the relation between export/imports and FDI of each regional fashion industry, then expand the study to the relation between those two factors found in the fashion industry of Korea in general, and finally, to the relation between the two factors in the fashion industry of countries that are the major export nations of fashion goods into Korea. The data which this study is based on were collected from the International Trade Statistics Yearbook Vol. II (UN, 1991-2002, New York: UN), UNCTAD Handbook of Statistics (UN, 1996-2001, Vienna: UN), UNCTAD database, the archives of the Korea Federation of Textile Industry and the archives of the Export-Import Bank of Korea. The methods of analysis used in this study were correlation, regression, and descriptive statistics of the data. The result of this study showed that each fashion industry of different regions was subject to a diversity of effects. For one, the fashion industry in Korea showed a significant correlation between outbound investment and both export and import. On the other hand, the apparel industry in Korea showed a significant correlation between outbound investment and imports, but no such correlation between outbound investment and exports.

S-wave Relative Travel Time Tomography for Northeast China (중국 만주지역 S파 상대주시 토모그래피)

  • Kim, Yong-Woo;Kim, Hyo-Ji;Lim, Jung-A;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2018
  • The Northeast China is an important site geologically and geophysically because of a huge volcano called Mt. Baekdu, which is one of the largest volcanoes in the world. Signs of eruption have been recently observed and people are keen to its behavior. We carried out relative travel time tomography to investigate the velocity structure between 100 ~ 600 km depth beneath Northeast China. We used teleseismic data during 2009 ~ 2011 recorded in NecessArray provided by IRIS (Incorporated Research Institute for Seismology). The relative observations were obtained by using the multi-channel cross-correlation method. Based on the tomographic results, we observed that the locations beneath which low-velocity zones are observed coincide with the locations of several volcanic regions in Northeast China. A low-velocity anomaly is revealed beneath Mt. Baekdu down to 600 km depth, which is thought to the main origin of the magma supply for Mt. Baekdu. Another low velocity anomaly is observed beneath east of the Datong volcano down to around 300 km depth, which is inferred to be related to an upwelling from deep mantle. We observed a low velocity anomaly beneath the Wudalianchi volcano down to around 200 km depth, which may imply that this volcano has been formed by an upwelling from the asthenosphere.

Improvement of Land Cover Classification Accuracy by Optimal Fusion of Aerial Multi-Sensor Data

  • Choi, Byoung Gil;Na, Young Woo;Kwon, Oh Seob;Kim, Se Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.135-152
    • /
    • 2018
  • The purpose of this study is to propose an optimal fusion method of aerial multi - sensor data to improve the accuracy of land cover classification. Recently, in the fields of environmental impact assessment and land monitoring, high-resolution image data has been acquired for many regions for quantitative land management using aerial multi-sensor, but most of them are used only for the purpose of the project. Hyperspectral sensor data, which is mainly used for land cover classification, has the advantage of high classification accuracy, but it is difficult to classify the accurate land cover state because only the visible and near infrared wavelengths are acquired and of low spatial resolution. Therefore, there is a need for research that can improve the accuracy of land cover classification by fusing hyperspectral sensor data with multispectral sensor and aerial laser sensor data. As a fusion method of aerial multisensor, we proposed a pixel ratio adjustment method, a band accumulation method, and a spectral graph adjustment method. Fusion parameters such as fusion rate, band accumulation, spectral graph expansion ratio were selected according to the fusion method, and the fusion data generation and degree of land cover classification accuracy were calculated by applying incremental changes to the fusion variables. Optimal fusion variables for hyperspectral data, multispectral data and aerial laser data were derived by considering the correlation between land cover classification accuracy and fusion variables.

Accuracy Assessment of the Satellite-based IMERG's Monthly Rainfall Data in the Inland Region of Korea (한반도 육상지역에서의 위성기반 IMERG 월 강수 관측 자료의 정확도 평가)

  • Ryu, Sumin;Hong, Sungwook
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • Rainfall is one of the most important meteorological variables in meteorology, agriculture, hydrology, natural disaster, construction, and architecture. Recently, satellite remote sensing is essential to the accurate detection, estimation, and prediction of rainfall. In this study, the accuracy of Integrated Multi-satellite Retrievals for GPM (IMERG) product, a composite rainfall information based on Global Precipitation Measurement (GPM) satellite was evaluated with ground observation data in the inland of Korea. The Automatic Weather Station (AWS)-based rainfall measurement data were used for validation. The IMERG and AWS rainfall data were collocated and compared during one year from January 1, 2016 to December 31, 2016. The coastal regions and islands were also evaluated irrespective of the well-known uncertainty of satellite-based rainfall data. Consequently, the IMERG data showed a high correlation (0.95) and low error statistics of Bias (15.08 mm/mon) and RMSE (30.32 mm/mon) in comparison to AWS observations. In coastal regions and islands, the IMERG data have a high correlation more than 0.7 as well as inland regions, and the reliability of IMERG data was verified as rainfall data.

A Multi-Wavelength Study of Galaxy Transition in Different Environments (다파장 관측 자료를 이용한 다양한 환경에서의 은하 진화 연구)

  • Lee, Gwang-Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.34.2-35
    • /
    • 2018
  • Galaxy transition from star-forming to quiescent, accompanied with morphology transformation, is one of the key unresolved issues in extragalactic astronomy. Although several environmental mechanisms have been proposed, a deeper understanding of the impact of environment on galaxy transition still requires much exploration. My Ph.D. thesis focuses on which environmental mechanisms are primarily responsible for galaxy transition in different environments and looks at what happens during the transition phase using multi-wavelength photometric/spectroscopic data, from UV to mid-infrared (MIR), derived from several large surveys (GALEX, SDSS, and WISE) and our GMOS-North IFU observations. Our multi-wavelength approach provides new insights into the *late* stages of galaxy transition with a definition of the MIR green valley different from the optical green valley. I will present highlights from three areas in my thesis. First, through an in-depth study of environmental dependence of various properties of galaxies in a nearby supercluster A2199 (Lee et al. 2015), we found that the star formation of galaxies is quenched before the galaxies enter the MIR green valley, which is driven mainly by strangulation. Then, the morphological transformation from late- to early-type galaxies occurs in the MIR green valley. The main environmental mechanisms for the morphological transformation are galaxy-galaxy mergers and interactions that are likely to happen in high-density regions such as galaxy groups/clusters. After the transformation, early-type MIR green valley galaxies keep the memory of their last star formation for several Gyr until they move on to the next stage for completely quiescent galaxies. Second, compact groups (CGs) of galaxies are the most favorable environments for galaxy interactions. We studied MIR properties of galaxies in CGs and their environmental dependence (Lee et al. 2017), using a sample of 670 CGs identified using a friends-of-friends algorithms. We found that MIR [3.4]-[12] colors of CG galaxies are, on average, bluer than those of cluster galaxies. As CGs are located in denser regions, they tend to have larger early-type galaxy fractions and bluer MIR color galaxies. These trends can also be seen for neighboring galaxies around CGs. However, CG members always have larger early-type fractions and bluer MIR colors than their neighboring galaxies. These results suggest that galaxy evolution is faster in CGs than in other environments and that CGs are likely to be the best place for pre-processing. Third, post-starburst galaxies (PSBs) are an ideal laboratory to investigate the details of the transition phase. Their spectra reveal a phase of vigorous star formation activity, which is abruptly ended within the last 1 Gyr. Numerical simulations predict that the starburst, and thus the current A-type stellar population, should be localized within the galaxy's center (< kpc). Yet our GMOS IFU observations show otherwise; all five PSBs in our sample have Hdelta absorption line profiles that extend well beyond the central kpc. Most interestingly, we found a negative correlation between the Hdelta gradient slopes and the fractions of the stellar mass produced during the starburst, suggesting that stronger starbursts are more centrally-concentrated. I will discuss the results in relation with the origin of PSBs.

  • PDF

Enhancement of Inter-Image Statistical Correlation for Accurate Multi-Sensor Image Registration (정밀한 다중센서 영상정합을 위한 통계적 상관성의 증대기법)

  • Kim, Kyoung-Soo;Lee, Jin-Hak;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.1-12
    • /
    • 2005
  • Image registration is a process to establish the spatial correspondence between images of the same scene, which are acquired at different view points, at different times, or by different sensors. This paper presents a new algorithm for robust registration of the images acquired by multiple sensors having different modalities; the EO (electro-optic) and IR(infrared) ones in the paper. The two feature-based and intensity-based approaches are usually possible for image registration. In the former selection of accurate common features is crucial for high performance, but features in the EO image are often not the same as those in the R image. Hence, this approach is inadequate to register the E0/IR images. In the latter normalized mutual Information (nHr) has been widely used as a similarity measure due to its high accuracy and robustness, and NMI-based image registration methods assume that statistical correlation between two images should be global. Unfortunately, since we find out that EO and IR images don't often satisfy this assumption, registration accuracy is not high enough to apply to some applications. In this paper, we propose a two-stage NMI-based registration method based on the analysis of statistical correlation between E0/1R images. In the first stage, for robust registration, we propose two preprocessing schemes: extraction of statistically correlated regions (ESCR) and enhancement of statistical correlation by filtering (ESCF). For each image, ESCR automatically extracts the regions that are highly correlated to the corresponding regions in the other image. And ESCF adaptively filters out each image to enhance statistical correlation between them. In the second stage, two output images are registered by using NMI-based algorithm. The proposed method provides prospective results for various E0/1R sensor image pairs in terms of accuracy, robustness, and speed.