• Title/Summary/Keyword: Multi-cloud

Search Result 389, Processing Time 0.025 seconds

A Study on 3D Indoor mapping for as-built BIM creation by using Graph-based SLAM (준공 BIM 구축을 위한 Graph-based SLAM 기반의 실내공간 3차원 지도화 연구)

  • Jung, Jaehoon;Yoon, Sanghyun;Cyrill, Stachniss;Heo, Joon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.3
    • /
    • pp.32-42
    • /
    • 2016
  • In Korea, the absence of BIM use in existing civil structures and buildings is driving a demand for as-built BIM. As-built BIMs are often created using laser scanners that provide dense 3D point cloud data. Conventional static laser scanning approaches often suffer from limitations in their operability due to the difficulties in moving the equipment, the selection of scanning location, and the requirement of placing targets or extracting tie points for registration of each scanned point cloud. This paper aims at reducing the manual effort using a kinematic 3D laser scanning system based on graph-based simultaneous localization and mapping (SLAM) for continuous indoor mapping. The robotic platform carries three 2D laser scanners: the front scanner is mounted horizontally to compute the robot's trajectory and to build the SLAM graph; the other two scanners are mounted vertically to scan the profiles of surrounding environments. To reduce the accumulated error in the trajectory of the platform through loop closures, the graph-based SLAM system incorporates AdaBoost loop closure approach, which is particularly suitable for the developed multi-scanner system providing more features than the single-scanner system for training. We implemented the proposed method and evaluated it in two indoor test sites. Our experimental results show that the false positive rate was reduced by 13.6% and 7.9% for the two dataset. Finally, the 2D and 3D mapping results of the two test sites confirmed the effectiveness of the proposed graph-based SLAM.

MTSAT Satellite Image Features on the Sever Storm Events in Yeongdong Region (영동지역 악기상 사례에 대한 MTSAT 위성 영상의 특징)

  • Kim, In-Hye;Kwon, Tae-Yong;Kim, Deok-Rae
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.29-45
    • /
    • 2012
  • An unusual autumn storm developed rapidly in the western part of the East sea on the early morning of 23 October 2006. This storm produced a record-breaking heavy rain and strong wind in the northern and middle part of the Yeong-dong region; 24-h rainfall of 304 mm over Gangneung and wind speed exceeding 63.7 m $s^{-1}$ over Sokcho. In this study, MTSAT-1R (Multi-fuctional Transport Satellite) water vapor and infrared channel imagery are examined to find out some features which are dynamically associated with the development of the storm. These features may be the precursor signals of the rapidly developing storm and can be employed for very short range forecast and nowcasting of severe storm. The satellite features are summarized: 1) MTSAT-1R Water Vapor imagery exhibited that distinct dark region develops over the Yellow sea at about 12 hours before the occurrence of maximum rainfall about 1100 KST on 23 October 2006. After then, it changes gradually into dry intrusion. This dark region in the water vapor image is closely related with the positive anomaly in 500 hPa Potential Vorticity field. 2) In the Infrared imagery, low stratus (brightness temperature: $0{\sim}5^{\circ}C$) develops from near Bo-Hai bay and Shanfung peninsula and then dissipates partially on the western coast of Korean peninsula. These features are found at 10~12 hours before the maximum rainfall occurrence, which are associated with the cold and warm advection in the lower troposphere. 3) The IR imagery reveals that two convective cloud cells (brightness temperature below $-50^{\circ}C$) merge each other and after merging it grows up rapidly over the western part of East sea at about 5 hours before the maximum rainfall occurrence. These features remind that there must be the upward flow in the upper troposphere and the low-layer convergence over the same region of East sea. The time of maximum growth of the convective cloud agrees well with the time of the maximum rainfall.

A Technique for Provisioning Virtual Clusters in Real-time and Improving I/O Performance on Computational-Science Simulation Environments (계산과학 시뮬레이션을 위한 실시간 가상 클러스터 생성 및 I/O 성능 향상 기법)

  • Choi, Chanho;Lee, Jongsuk Ruth;Kim, Hangi;Jin, DuSeok;Yu, Jung-lok
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • Computational science simulations have been used to enable discovery in a broad spectrum of application areas, these simulations show irregular demanding characteristics of computing resources from time to time. The adoption of virtualized high performance cloud, rather than CPU-centric computing platform (such as supercomputers), is gaining interest of interests mainly due to its ease-of-use, multi-tenancy and flexibility. Basically, provisioning a virtual cluster, which consists of a lot of virtual machines, in a real-time has a critical impact on the successful deployment of the virtualized HPC clouds for computational science simulations. However, the cost of concurrently creating many virtual machines in constructing a virtual cluster can be as much as two orders of magnitude worse than expected. One of the main factors in this bottleneck is the time spent to create the virtual images for the virtual machines. In this paper, we propose a novel technique to minimize the creation time of virtual machine images and improve I/O performance of the provisioned virtual clusters. We also confirm that our proposed technique outperforms the conventional ones using various sets of experiments.

Distribution of Surface Solar Radiation by Radiative Model in South Korea (복사 모델에 의한 남한의 지표면 태양광 분포)

  • Zo, Il-Sung;Jee, Joon-Bum;Lee, Won-Hak;Lee, Kyu-Tae;Choi, Young-Jean
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.147-161
    • /
    • 2010
  • The temporal and spatial distributions of surface solar radiation were calculated by the one layer solar radiative transfer model(GWNU) which was corrected by multi layer Line-by-Line(LBL) model during 2009 in South Korea. The aerosol optical thickness, ozone amount, cloud fraction and total precipitable water were used as the input data for GWNU model run and they were retrieved from Moderate Resolution Imaging Spectrometer(MODIS), Ozone Monitoring Instrument(OMI), MTSAT-1R satellite data and the Regional Data Assimilation Prediction System(RDAPS) model result, respectively. The surface solar radiation was calculated with 4 km spatial resolution in South Korea region using the GWNU model and the results were compared with surface measurement(by pyranometer) data of 22 KMA solar sites. The maximum values(more than $5,400MJ/m^2$) of model calculated annual solar radiation were found in Andong, Daegu and Jinju regions and these results were corresponded with the MTSAT-1R cloud amount data. However, the spatial distribution of surface measurement data was comparatively different from the model calculation because of the insufficient correction and management problems for the sites instruments(pyranometer).

A Study on the Estimation of Wind Velocity in Asymmetric Doppler Spectra of Weather Signals (비대칭 도플러 스펙트럼 기상신호에서의 풍속 추정에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1753-1759
    • /
    • 2009
  • A weather radar as one of the remote sensing devices to analyze the weather phenomena receives the return echoes which consist of scattered electromagnetic wave signals from rain, cloud and dust particles, etc. These received Doppler weather spectra are analyzed to extract the various characteristic weather information. The mean wind velocity is one of the important weather parameters which can be obtained by a weather radar ed it may be useful in the prevention of weather hazards occurred by the abrupt shift of wind in small geographical scales such as microbursts. It is usually estimated by pulse pair method which is considered to be reliable and very efficient in the computational requirement. However, there are some problems in the accurate estimation of the mean velocity if Doppler spectra of weather signals appear to be asymmetric gaussian or multi-peak spectra. Therefore, in this paper, the problems in the mean estimation of asymmetric Doppler spectra are analyzed and the improved method is suggested.

Design Development for Fashion Cultural Product Using Traditional Patterns by Tessellation

  • Park, Youshin
    • Journal of Fashion Business
    • /
    • v.20 no.6
    • /
    • pp.79-93
    • /
    • 2016
  • Since the development of patterns using tessellation is applied to a wide range of fields such as clothing, architecture, environment, and products, etc. and its expression principle is also found in various fields such as mathematics and science, etc. However, this pattern is mostly used as a math material with little studies on fashion and culture. In addition, it is thought that Korean traditional culture products need more various and modern design development methods and pattern through preliminary investigation which is simple copy of traditional items, simple copy of Korean Alphabet, Chinese character, and folk paintings. Therefore, it will present the method to make more design cases using Tessellation. Tessellation that combines mathematics and art will be the infinite form of designing of designers as well as creative training way to understand the composition principles of old culture and to raise sense of modern design. Tessellation of regular triangle, regular square, and regular hexagon was performed on the patterns which have meaning of wealth and prosperity of Korean traditional patterns. As the concrete method, first, each side of the regular triangle is developed symmetrically with patterns of fish, turtle, and cicadas. Second, rotational movement after symmetry movement about middle point of one side ${\times}$ 1 symmetry movement about middle point ${\times}$ 1 using crane and cloud, of the regular triangle was performed. Third, the regular square was tessellated parallel movement ${\times}$ 2 with "Da(multi)" and dragon pattern as the source image. Fourth, the sitting tiger was tessellated with symmetry movement about middle point ${\times}$ 2 and parallel movement ${\times}$ 1. Fifth, three bat patterns are tessellated by again rotational movement of two sides after rotational movement of one side and rotational movement of the other side. In addition, It developed traditional culture product design of the scarf, umbrella, aprons, neckties.

The Detection of Yellow Sand Using MTSAT-1R Infrared bands

  • Ha, Jong-Sung;Kim, Jae-Hwan;Lee, Hyun-Jin
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.236-238
    • /
    • 2006
  • An algorithm for detection of yellow sand aerosols has been developed with infrared bands from Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-functional Transport Satellite-1 Replacement (MTSAT-1R) data. The algorithm is the hybrid algorithm that has used two methods combined together. The first method used the differential absorption in brightness temperature difference between $11{\mu}m$ and $12{\mu}m$ (BTD1). The radiation at 11 ${\mu}m$ is absorbed more than at 12 ${\mu}m$ when yellow sand is loaded in the atmosphere, whereas it will be the other way around when cloud is present. The second method uses the brightness temperature difference between $3.7{\mu}m$ and $11{\mu}m$ (BTD2). The technique would be most sensitive to dust loading during the day when the BTD2 is enhanced by reflection of $3.7{\mu}m$ solar radiation. We have applied the three methods to MTSAT-1R for derivation of the yellow sand dust and in conjunction with the Principle Component Analysis (PCA), a form of eigenvector statistical analysis. As produced Principle Component Image (PCI) through the PCA is the correlation between BTD1 and BTD2, errors of about 10% that have a low correlation are eliminated for aerosol detection. For the region of aerosol detection, aerosol index (AI) is produced to the scale of BTD1 and BTD2 values over land and ocean respectively. AI shows better results for yellow sand detection in comparison with the results from individual method. The comparison between AI and OMI aerosol index (AI) shows remarkable good correlations during daytime and relatively good correlations over the land.

  • PDF

EFFECTS OF ATMOSPHERIC WATER AND SURFACE WIND ON PASSIVE MICROWAVE RETRIEVALS OF SEA ICE CONCENTRATION: A SIMULATION STUDY

  • Shin, Dong-Bin;Chiu, Long S.;Clemente-Colon, Pablo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.892-895
    • /
    • 2006
  • The atmospheric effects on the retrieval of sea ice concentration from passive microwave sensors are examined using simulated data typical for the Arctic summer. The simulation includes atmospheric contributions of cloud liquid water and water vapor and surface wind on surface emissivity on the microwave signatures. A plane parallel radiative transfer model is used to compute brightness temperatures at SSM/I frequencies over surfaces that contain open water, first-year (FY) ice and multi-year (MY) ice and their combinations. Synthetic retrievals in this study use the NASA Team (NT) algorithm for the estimation of sea ice concentrations. This study shows that if the satellite sensor’s field of view is filled with only FY ice the retrieval is not much affected by the atmospheric conditions due to the high contrast between emission signals from FY ice surface and the signals from the atmosphere. Pure MY ice concentration is generally underestimated due to the low MY ice surface emissivity that results in the enhancement of emission signals from the atmospheric parameters. Simulation results in marginal ice areas also show that the atmospheric and surface effects tend to degrade the accuracy at low sea ice concentration. FY ice concentration is overestimated and MY ice concentration is underestimated in the presence of atmospheric water and surface wind at low ice concentration. In particular, our results suggest that strong surface wind is more important than atmospheric water in contributing to the retrieval errors of total ice concentrations over marginal ice zones.

  • PDF

A Study on Ambiguous Expression for Efficacy of Medicinal Material - Focusing on 'Salchung[殺蟲]' - (의미가 다양한 본초 효능 표현에 대한 고찰 - 본초의 殺蟲 효능을 중심으로 -)

  • Kim, Sanghyun;Kim, Sangkyun;Nam, Boryeong;Lee, Myeong-gu;Lee, Seungho;Jang, Hyunchul
    • The Korea Journal of Herbology
    • /
    • v.30 no.4
    • /
    • pp.45-49
    • /
    • 2015
  • Objectives : Through this study, it would be confirmed that specific expression for efficacy of medicinal material has multiple meanings. And through the methodology to determine the multi meaning, it could be contributed to lighten ambiguous expressions for efficacy of medicinal material.Methods : The premise is that the efficacy and treatment target data are related to each other. Word cloud has been used analyzing the efficacy and treatment target data for medicinal materials. Then classic and modern documents were analyzed by the search.Results : Even though searching all related references as well as comparing the efficacy and treatment target data were done, some medicinal materials having 'Salchung[殺蟲]' as an efficacy are not expected to treat the disease associated with the parasite. Through the analysis of classic and modern documents, it was found that 'Salchung[殺蟲]' is not used only as a means of anthelmintic efficacy. But through the above analysis method some medicinal materials having 'Guchung[驅蟲]' as an efficacy are expected to treat the disease associated with the parasite, and 'Guchung[驅蟲]' seems to be almost used as a means of anthelmintic efficacy.Conclusions : If a certain expression for efficacy of medicinal material is used as a single meaning obviously, ambiguous expressions need to be clear. And if a certain expression for efficacy of medicinal material seems to have multiple meanings, the additional informations are to be supplemented for exact wording.

3-D Hetero-Integration Technologies for Multifunctional Convergence Systems

  • Lee, Kang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.11-19
    • /
    • 2015
  • Since CMOS device scaling has stalled, three-dimensional (3-D) integration allows extending Moore's law to ever high density, higher functionality, higher performance, and more diversed materials and devices to be integrated with lower cost. 3-D integration has many benefits such as increased multi-functionality, increased performance, increased data bandwidth, reduced power, small form factor, reduced packaging volume, because it vertically stacks multiple materials, technologies, and functional components such as processor, memory, sensors, logic, analog, and power ICs into one stacked chip. Anticipated applications start with memory, handheld devices, and high-performance computers and especially extend to multifunctional convengence systems such as cloud networking for internet of things, exascale computing for big data server, electrical vehicle system for future automotive, radioactivity safety system, energy harvesting system and, wireless implantable medical system by flexible heterogeneous integrations involving CMOS, MEMS, sensors and photonic circuits. However, heterogeneous integration of different functional devices has many technical challenges owing to various types of size, thickness, and substrate of different functional devices, because they were fabricated by different technologies. This paper describes new 3-D heterogeneous integration technologies of chip self-assembling stacking and 3-D heterogeneous opto-electronics integration, backside TSV fabrication developed by Tohoku University for multifunctional convergence systems. The paper introduce a high speed sensing, highly parallel processing image sensor system comprising a 3-D stacked image sensor with extremely fast signal sensing and processing speed and a 3-D stacked microprocessor with a self-test and self-repair function for autonomous driving assist fabricated by 3-D heterogeneous integration technologies.