• 제목/요약/키워드: Multi-class Classification

검색결과 231건 처리시간 0.034초

다중 클래스 분류를 위한 FSVM (FSVM for Multi Class Classification)

  • 이선영;김성수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.3004-3006
    • /
    • 2005
  • Support vector machine(SVM)은 입력 데이터를 두개의 다른 클래스로 구별하는 결정면을 학습과정을 통하여 구한다. 기존의 SVM은 단지 이차 클래스에 대하여 적용되어지나, 많은 응용분야에서 입력 데이터들은 몇 개의 다중 클래스로 분류해야 한다. 다중 클래스 분류 문제는 기존의 SVM을 사용할 수 있는 일반적으로 몇 개의 2차 문제로 분해하여 풀 수 있다. 실례로 one-against-all 방법을 적용하면, n 클래스 문제는 n 개의 두 클래스 문제로 변환 하여 풀 수 있다. 본 논문에서는 입력 패턴들을 다중 클래스로 분류 할 때 퍼지 소속도를 응용한 소프트 마진 알고리즘의 상한 경계값을 각 클래스에 따라 다르게 적용함으로써 기존의 SVM 보다 더 우수한 학습 능력을 가짐을 보였다.

  • PDF

정규 혼합분포를 이용한 준지도 학습 (Semi-Supervised Learning by Gaussian Mixtures)

  • 최병정;채윤석;최우영;박창이;구자용
    • 응용통계연구
    • /
    • 제21권5호
    • /
    • pp.825-833
    • /
    • 2008
  • 혼합모형을 이용한 판별분석은 다중 분류문제를 해결하는데 유용한 방법으로서 준지도 학습으로 확장될 수 있다. 본 논문에서는 정규 혼합분포를 이용한 준지도 학습 방법에서 혼합 모형의 하위 구성요소 개수 선택 기준을 연구하고자 한다. 하위 구성요소 선택 기준으로서 베이지안 정보량을 사용하였고 모의실험을 통해 이 방법의 유용성을 규명하였다.

포섭 구조기반 OVR SVM 결합을 통한 다중부류 암 분류 (Multi-class Cancer Classification by Integrating OVR SVMs based on Subsumption Architecture)

  • 홍진혁;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 한국컴퓨터종합학술대회 논문집 Vol.33 No.1 (A)
    • /
    • pp.37-39
    • /
    • 2006
  • 지지 벡터 기계(Support Vector Machine; SVM)는 기본적으로 이진분류를 위해 고안되었지만, 최근 다양한 분류기 생성전략과 결합전략이 고안되어 다중부류 분류에도 적용되고 있다. 본 논문에서는 OVR(One-Vs-Rest) 전략으로 생성된 SVM을 NB(Naive Bayes) 분류기를 이용하여 동적으로 구성함으로써, OVR SVM을 이용한 다중부류 분류 시스템에서 자주 발생하는 동점을 효과적으로 해결하는 방법은 제안한다. 이 방법을 유전발현 데이터를 이용한 다중부류 암 분류에 적용하였는데, 고차원의 데이터로부터 NB 분류기 구축에 유용한 유전자를 선택하기 위해 Pearson 상관계수를 사용하였다. 14개의 암 유형과 16,063개의 유전발현 수준을 가지는 대표적인 다중부류 암 분류 데이터인 GCM 암 데이터에 적용하여 제안하는 방법의 유용성을 확인하였다.

  • PDF

다중 클래스 분류를 위한 강인한 SVM 설계 방법 - 생체 인식 데이터에의 적용 - (Robust SVM Design for Multi-Class Classification - Application to Biometric data -)

  • 조민국;박혜영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.760-762
    • /
    • 2005
  • Support vector machine(SVM)은 졸은 일반화 능력을 가진 학습시스템으로, 최근 다양한 패턴 인식 분야에서 적용되고 있다. SVM은 기본적으로 이진 분류기이므로 두 개 이상의 클래스를 분류하기 위해서는 다중 클래스 분류가 가능한 형태로의 설계 방법이 필요하다. 이를 위해 각 클래스별로 독립적인 SVM들을 만들어 결과를 병합하는 방식이 주로 사용되어 왔다. 그러나 이러한 방법은 클래스의 수는 않고 한 클래스 내의 데이터의 수가 많지 않은 경우에는 SVM의 일반화 성능을 저하시키고 노이즈에 민감해지는 문제점을 가지고 있다. 이를 해결하기 위해 본 논문에서는 각 클래스내의 데이터간의 유사도 측정을 위한 통계적 정보를 안정적으로 추출하기 위해 두 데이터의 쌍을 입력으로 받는 새로운 SVM 설계 방법을 제시한다. 제안한 방법을 실제 생체인식 데이터에 적용한 실험에서 기존의 방법보다 우수한 분류 성능을 보임을 확인할 수 있었다.

  • PDF

유전자 발현량 데이터의 클러스터링을 이용한 다중 클래스 분류 모델 (Multi-Class Classification Model Using Gene Expression Data Clustering)

  • 김현진;안재균;박치현;윤영미;박상현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.1240-1242
    • /
    • 2011
  • 본 논문에서는 여러 개의 클래스가 존재할 때, 각 클래스 내에서 샘플들을 클러스터링하고 서로 다른 클래스들과 분산도를 비교하여 클러스터가 가장 겹치지 않는 유전자 쌍들을 찾는다. 각 유전자 쌍에서 테스트 샘플과 가장 가까운 클러스터를 찾음으로써 클래스를 분류하고, 최종적으로 과반수 의결(Majority vote)하여 가장 많이 분류된 클래스를 최종 클래스로 확정한다. 그 결과, 해당 모델이 여러 개의 클래스를 가진 데이터에서 다른 비교 알고리즘의 모델들보다 높은 정확도를 나타내었다.

Research on Early Academic Warning by a Hybrid Methodology

  • Lun, Guanchen;Zhu, Lu;Chen, Haotian;Jeong, Dongwon
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.21-22
    • /
    • 2021
  • Early academic warning is considered as an inherent problem in education data mining. Early and timely concern and guidance can save a student's university career. It is widely assumed as a multi-class classification system in view of machine learning. Therefore, An accurate and precise methodical solution is a complicated task to accomplish. For this issue, we present a hybrid model employing rough set theory with a back-propagation neural network to ameliorate the predictive capability of the system with an illustrative example. The experimental results show that it is an effective early academic warning model with an escalating improvement in predictive accuracy.

  • PDF

MPEG-7 시각 기술자와 멀티 클래스 SVM을 이용한 의료 영상 분류와 검색 (Medical Image Classification and Retrieval using MPEG-7 Visual Descriptors and Multi-Class SVM(Support Vector Machine))

  • 심정희;고병철;남재열
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.135-138
    • /
    • 2008
  • 본 논문은 의료 영상에 대한 효과적인 분류와 검색을 위한 알고리즘을 제안한다. 영상 분류와 검색을 위해서 MPEG-7 표준 기술자인 색 구조 기술자와 경계선 히스토그램 기술자를 사용해 영상들에 대한 특징 값을 추출한다. 이렇게 구해진 특징 값들을 의료 영상의 분류와 검색에 적용해 본 결과 비교적 낮은 성능을 보여줌을 확인하고 앞서 구해진 특징 값들을 교사 학습 방법인 SVM(Support Vector Machine)과 비교사 학습 방법인 FCM(Fuzzy C-means Clustering)에 적용시켰다. 기존 연구에서는 SVM과 FCM의 통합으로 의료 영상에 대한 분류와 검색을 시행하였지만 본 논문에서 실험한 결과 SVM과 MPEG-7 시각 기술자 중에 하나인 EHD(Edge Histogram Descriptor)를 가중치 선형 결합하여 실험한 결과가 더 정확한 분류와 높은 검색 성능을 나타냄을 확인하였다.

오픈 월드 객체 감지의 현재 트렌드에 대한 리뷰 (Unveiling the Unseen: A Review on current trends in Open-World Object Detection)

  • 이크발 무하마드 알리;김수균
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.335-337
    • /
    • 2024
  • This paper presents a new open-world object detection method emphasizing uncertainty representation in machine learning models. The focus is on adapting to real-world uncertainties, incrementally updating the model's knowledge repository for dynamic scenarios. Applications like autonomous vehicles benefit from improved multi-class classification accuracy. The paper reviews challenges in existing methodologies, stressing the need for universal detectors capable of handling unknown classes. Future directions propose collaboration, integration of language models, to improve the adaptability and applicability of open-world object detection.

  • PDF

SAR 자료에서 추출한 특징들과 토지 피복 항목 사이의 연관성 분석 (Analysis of Relationships between Features Extracted from SAR Data and Land-cover Classes)

  • 박노욱;지광훈;이훈열
    • 대한원격탐사학회지
    • /
    • 제23권4호
    • /
    • pp.257-272
    • /
    • 2007
  • 이 논문에서는 촬영 시기 및 촬영 모드(주파수, 편파, 입사각)에 있어서 여러 가지 조건을 가지는 다양한 SAR 자료로부터 특징을 추출하여 토지 피복 항목과의 상호 연관성을 분석하였다. 현재까지 가용한 인공위성 SAR 영상의 촬영 조건을 고려하여 다음의 두 가지 경우로 구분하여 특징을 추출하였다. 첫째, 단일 모드로 다중 시기에 얻어진 SAR 자료로부터 긴밀도, 시간적 변이도, 주성분 변환에 의한 특징들을 추출하였다. C-밴드인 ERS-1/2, ENVISAT SAR, Radarsat-1 자료와 L-밴드인 JERS-1 SAR 자료를 대상으로 이러한 특징들을 각각 추출하였으며, 일반적인 토지 피복 항목과의 연관성 분석을 통해 다중 센서의 특성 차이를 비교 분석하였다. 여러 특징들 중에서 Tandem 긴밀도는 대체적으로 토지 피복 항목간 구별력이 가장 좋게 나타났다. C-밴드 SAR 자료의 장기간 긴밀도에서는 도심 지역의 구분이 용이하였으며, 시간적 변이도에서는 모든 센서 자료에서 논 지역이 가장 높은 값을 나타내었다. 또한 시계열 후방 산란 계수와 긴밀도의 주성분 변환에 기반한 특징들에서는 토지 피복과 관련된 부가 정보 추출이 가능하였다. 둘째, 다중모드(편파, 입사각)로 비슷한 시기에 얻어진 SAR 자료로부터 편파비와 다중 채널 변이도를 주요 특징으로 추출하여 토지 피복 항목별로 비교하였다. 그 결과, VH/VV 편파비로부터 산림과 밭 항목의 구분력이 향상되는 것으로 나타났다. 이 연구의 분석 결과는 향후 다양한 모드의 시계열적 SAR 자료 및 지상 산란계 실험을 통한 다양한 사례 연구 결과와 결합된다면, SAR 자료를 이용한 토지 피복 분류의 정확도 향상을 위한 기초 정보로 활용될 수 있을 것으로 기대된다.

정보력 있는 유전자 선택 방법 조합을 이용한 마이크로어레이 분류 시스템 구현 (The Implement of System on Microarry Classification Using Combination of Signigicant Gene Selection Method)

  • 박수영;정채영
    • 한국정보통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.315-320
    • /
    • 2008
  • 오늘날 인간 genome프로젝트와 같은 종합적인 연구의 궁극적 목적을 달성하기 위해서는 이들 연구로부터 획득한 대량의 관련 데이터에 대해 새로운 현실적 의미를 부여할 수 있어야 한다. 이러한 맥락에서 유전자 발현 분석 시스템과 염기 서열 분석 시스템의 구축이 포스트 genome 시대를 맞이하여 새롭게 주복을 받고 있다. 최근에는 종양의 특정 부 클래스가 특정 염색체와 관련되어 있다는 사실이 밝혀지면서, 마이크로어레이는 유전자 발현 정보를 기반으로 암의 분류와 예측을 통한 진단 분야에도 활용되기 시작했다. 본 논문에서는 암에 걸린 흰쥐 외피 기간 세포 분화 실험에서 얻어진 3840 유전자의 마이크로어레이 cDNA를 이용하여 데이터의 정규화를 거쳐 정보력 있는 유전자 목록을 별도로 추출할 수 있는 시스템을 고안하고 보다 정보력 있는 유전자를 선택하기 위해 조합 방법을 제안하였다. 그리고 제안한 시스템과 방법론의 가능성을 실험을 통해 검증하였다. 그 결과 PC-ED 조합이 98.74%의 정확도와 0.04%의 MSE를 보여 단일 유사성 척도를 사용하여 유전자 목록을 생성하고 실험을 수행한 경우보다 분류 성능이 향상되었다.