Support vector machine(SVM)은 입력 데이터를 두개의 다른 클래스로 구별하는 결정면을 학습과정을 통하여 구한다. 기존의 SVM은 단지 이차 클래스에 대하여 적용되어지나, 많은 응용분야에서 입력 데이터들은 몇 개의 다중 클래스로 분류해야 한다. 다중 클래스 분류 문제는 기존의 SVM을 사용할 수 있는 일반적으로 몇 개의 2차 문제로 분해하여 풀 수 있다. 실례로 one-against-all 방법을 적용하면, n 클래스 문제는 n 개의 두 클래스 문제로 변환 하여 풀 수 있다. 본 논문에서는 입력 패턴들을 다중 클래스로 분류 할 때 퍼지 소속도를 응용한 소프트 마진 알고리즘의 상한 경계값을 각 클래스에 따라 다르게 적용함으로써 기존의 SVM 보다 더 우수한 학습 능력을 가짐을 보였다.
혼합모형을 이용한 판별분석은 다중 분류문제를 해결하는데 유용한 방법으로서 준지도 학습으로 확장될 수 있다. 본 논문에서는 정규 혼합분포를 이용한 준지도 학습 방법에서 혼합 모형의 하위 구성요소 개수 선택 기준을 연구하고자 한다. 하위 구성요소 선택 기준으로서 베이지안 정보량을 사용하였고 모의실험을 통해 이 방법의 유용성을 규명하였다.
지지 벡터 기계(Support Vector Machine; SVM)는 기본적으로 이진분류를 위해 고안되었지만, 최근 다양한 분류기 생성전략과 결합전략이 고안되어 다중부류 분류에도 적용되고 있다. 본 논문에서는 OVR(One-Vs-Rest) 전략으로 생성된 SVM을 NB(Naive Bayes) 분류기를 이용하여 동적으로 구성함으로써, OVR SVM을 이용한 다중부류 분류 시스템에서 자주 발생하는 동점을 효과적으로 해결하는 방법은 제안한다. 이 방법을 유전발현 데이터를 이용한 다중부류 암 분류에 적용하였는데, 고차원의 데이터로부터 NB 분류기 구축에 유용한 유전자를 선택하기 위해 Pearson 상관계수를 사용하였다. 14개의 암 유형과 16,063개의 유전발현 수준을 가지는 대표적인 다중부류 암 분류 데이터인 GCM 암 데이터에 적용하여 제안하는 방법의 유용성을 확인하였다.
Support vector machine(SVM)은 졸은 일반화 능력을 가진 학습시스템으로, 최근 다양한 패턴 인식 분야에서 적용되고 있다. SVM은 기본적으로 이진 분류기이므로 두 개 이상의 클래스를 분류하기 위해서는 다중 클래스 분류가 가능한 형태로의 설계 방법이 필요하다. 이를 위해 각 클래스별로 독립적인 SVM들을 만들어 결과를 병합하는 방식이 주로 사용되어 왔다. 그러나 이러한 방법은 클래스의 수는 않고 한 클래스 내의 데이터의 수가 많지 않은 경우에는 SVM의 일반화 성능을 저하시키고 노이즈에 민감해지는 문제점을 가지고 있다. 이를 해결하기 위해 본 논문에서는 각 클래스내의 데이터간의 유사도 측정을 위한 통계적 정보를 안정적으로 추출하기 위해 두 데이터의 쌍을 입력으로 받는 새로운 SVM 설계 방법을 제시한다. 제안한 방법을 실제 생체인식 데이터에 적용한 실험에서 기존의 방법보다 우수한 분류 성능을 보임을 확인할 수 있었다.
본 논문에서는 여러 개의 클래스가 존재할 때, 각 클래스 내에서 샘플들을 클러스터링하고 서로 다른 클래스들과 분산도를 비교하여 클러스터가 가장 겹치지 않는 유전자 쌍들을 찾는다. 각 유전자 쌍에서 테스트 샘플과 가장 가까운 클러스터를 찾음으로써 클래스를 분류하고, 최종적으로 과반수 의결(Majority vote)하여 가장 많이 분류된 클래스를 최종 클래스로 확정한다. 그 결과, 해당 모델이 여러 개의 클래스를 가진 데이터에서 다른 비교 알고리즘의 모델들보다 높은 정확도를 나타내었다.
Early academic warning is considered as an inherent problem in education data mining. Early and timely concern and guidance can save a student's university career. It is widely assumed as a multi-class classification system in view of machine learning. Therefore, An accurate and precise methodical solution is a complicated task to accomplish. For this issue, we present a hybrid model employing rough set theory with a back-propagation neural network to ameliorate the predictive capability of the system with an illustrative example. The experimental results show that it is an effective early academic warning model with an escalating improvement in predictive accuracy.
본 논문은 의료 영상에 대한 효과적인 분류와 검색을 위한 알고리즘을 제안한다. 영상 분류와 검색을 위해서 MPEG-7 표준 기술자인 색 구조 기술자와 경계선 히스토그램 기술자를 사용해 영상들에 대한 특징 값을 추출한다. 이렇게 구해진 특징 값들을 의료 영상의 분류와 검색에 적용해 본 결과 비교적 낮은 성능을 보여줌을 확인하고 앞서 구해진 특징 값들을 교사 학습 방법인 SVM(Support Vector Machine)과 비교사 학습 방법인 FCM(Fuzzy C-means Clustering)에 적용시켰다. 기존 연구에서는 SVM과 FCM의 통합으로 의료 영상에 대한 분류와 검색을 시행하였지만 본 논문에서 실험한 결과 SVM과 MPEG-7 시각 기술자 중에 하나인 EHD(Edge Histogram Descriptor)를 가중치 선형 결합하여 실험한 결과가 더 정확한 분류와 높은 검색 성능을 나타냄을 확인하였다.
This paper presents a new open-world object detection method emphasizing uncertainty representation in machine learning models. The focus is on adapting to real-world uncertainties, incrementally updating the model's knowledge repository for dynamic scenarios. Applications like autonomous vehicles benefit from improved multi-class classification accuracy. The paper reviews challenges in existing methodologies, stressing the need for universal detectors capable of handling unknown classes. Future directions propose collaboration, integration of language models, to improve the adaptability and applicability of open-world object detection.
이 논문에서는 촬영 시기 및 촬영 모드(주파수, 편파, 입사각)에 있어서 여러 가지 조건을 가지는 다양한 SAR 자료로부터 특징을 추출하여 토지 피복 항목과의 상호 연관성을 분석하였다. 현재까지 가용한 인공위성 SAR 영상의 촬영 조건을 고려하여 다음의 두 가지 경우로 구분하여 특징을 추출하였다. 첫째, 단일 모드로 다중 시기에 얻어진 SAR 자료로부터 긴밀도, 시간적 변이도, 주성분 변환에 의한 특징들을 추출하였다. C-밴드인 ERS-1/2, ENVISAT SAR, Radarsat-1 자료와 L-밴드인 JERS-1 SAR 자료를 대상으로 이러한 특징들을 각각 추출하였으며, 일반적인 토지 피복 항목과의 연관성 분석을 통해 다중 센서의 특성 차이를 비교 분석하였다. 여러 특징들 중에서 Tandem 긴밀도는 대체적으로 토지 피복 항목간 구별력이 가장 좋게 나타났다. C-밴드 SAR 자료의 장기간 긴밀도에서는 도심 지역의 구분이 용이하였으며, 시간적 변이도에서는 모든 센서 자료에서 논 지역이 가장 높은 값을 나타내었다. 또한 시계열 후방 산란 계수와 긴밀도의 주성분 변환에 기반한 특징들에서는 토지 피복과 관련된 부가 정보 추출이 가능하였다. 둘째, 다중모드(편파, 입사각)로 비슷한 시기에 얻어진 SAR 자료로부터 편파비와 다중 채널 변이도를 주요 특징으로 추출하여 토지 피복 항목별로 비교하였다. 그 결과, VH/VV 편파비로부터 산림과 밭 항목의 구분력이 향상되는 것으로 나타났다. 이 연구의 분석 결과는 향후 다양한 모드의 시계열적 SAR 자료 및 지상 산란계 실험을 통한 다양한 사례 연구 결과와 결합된다면, SAR 자료를 이용한 토지 피복 분류의 정확도 향상을 위한 기초 정보로 활용될 수 있을 것으로 기대된다.
오늘날 인간 genome프로젝트와 같은 종합적인 연구의 궁극적 목적을 달성하기 위해서는 이들 연구로부터 획득한 대량의 관련 데이터에 대해 새로운 현실적 의미를 부여할 수 있어야 한다. 이러한 맥락에서 유전자 발현 분석 시스템과 염기 서열 분석 시스템의 구축이 포스트 genome 시대를 맞이하여 새롭게 주복을 받고 있다. 최근에는 종양의 특정 부 클래스가 특정 염색체와 관련되어 있다는 사실이 밝혀지면서, 마이크로어레이는 유전자 발현 정보를 기반으로 암의 분류와 예측을 통한 진단 분야에도 활용되기 시작했다. 본 논문에서는 암에 걸린 흰쥐 외피 기간 세포 분화 실험에서 얻어진 3840 유전자의 마이크로어레이 cDNA를 이용하여 데이터의 정규화를 거쳐 정보력 있는 유전자 목록을 별도로 추출할 수 있는 시스템을 고안하고 보다 정보력 있는 유전자를 선택하기 위해 조합 방법을 제안하였다. 그리고 제안한 시스템과 방법론의 가능성을 실험을 통해 검증하였다. 그 결과 PC-ED 조합이 98.74%의 정확도와 0.04%의 MSE를 보여 단일 유사성 척도를 사용하여 유전자 목록을 생성하고 실험을 수행한 경우보다 분류 성능이 향상되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.