• Title/Summary/Keyword: Multi-channel active noise controller

Search Result 6, Processing Time 0.018 seconds

The efficient implementation of the multi-channel active noise controller using a low-cost microcontroller unit (저가 microcontoller unit을 이용한 효율적인 다채널 능동 소음 제어기 구현)

  • Chung, Ik Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.9-22
    • /
    • 2019
  • In this paper, we propose a method that can be applied to the efficient implementation of multi-channel active noise controller. Since the normalized MFxLMS (Modified Filtered-x Least Mean Square) algorithm for the multi-channel active noise control requires a large amount of computation, the difficulty has lied in implementing the algorithm using a low-cost MCU (Microcontoller Unit). We implement the multi-channel active noise controller efficiently by optimizing the software based on the features of the MCU. By maximizing the usage of single-cycle MAC (Multiply- Accumulate) operations and minimizing move operations of the delay memory, we can achieve more than 3 times the performance in the aspect of computational optimization, and by parellel processing using the auxillary processor included in the MCU, we can also obtain more than 4 times the performance. In addition, the usage of additional parts can be minimized by maximizing the usage of the peripherals embedded in the MCU.

A Study on the Multi-Channel Active Noise Control for Noise Reduction of the Vehicle Cabin II : Semi-experiment (자동차 실내 소음저감을 위한 다채널 능동소음 제어에 관한 연구 II : 모의 실험)

  • Kim, H.S.;Lee, T.Y.;Shin, J.;Oh, J.E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.29-37
    • /
    • 1994
  • Active noise control of random noise which propatate in the vehicle cabin as a form of spherical wave is the target of this study. In the previous study, the adaptive algorithm for adaptive controller is presented for the application in active noise control system. And for the preliminary study of adaptive active noise control in vehicle cabin as a real system, a computer simulation is performed on the effectiveness of the adaptive algorithm in the amplitude of the pressure fluctuation. This work studies the implementation of multi-channel feedforward adaptive algorithm for the reduction of the noise inside a vehicle cabin using a number of secondary sources derived by adaptive filtering of reference noise source. Multi-channel adaptive feedforward algorithm are verified in numerical simulation and semi-experimental justification of developed system is made on a domestic passenger car. In the results of semi-experimental study, the noise of specific region in the interior of automobile are reduced for the appreciabe sound pressure level in the operating engine rpm and finally this study suggests the capabilities of the real time active noise control in 3 dimensional acoustic fields.

  • PDF

Multi-Channel Active Noise Control System Designs using Fuzzy Logic Stabilized Algorithms (퍼지논리 안정화알고리즘을 이용한 다중채널 능동소음제어시스템)

  • Ahn, Dong-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3647-3653
    • /
    • 2012
  • In active noise control filter, IIR filter structure which used for control filter assures the stability property. The stability characteristics of IIR filter structure is mainly determined by pole location of control filter within unit disc, so stable selection of the value of control filter coefficient is very important. In this paper, we proposed novel adaptive stabilized Filtered_U LMS algorithms with IIR filter structure which has better convergence speed and less computational burden than conventional FIR structures, for multi-channel active noise control with vehicle enclosure signal case. For better convergence speed in adaptive algorithms, fuzzy LMS algorithms where convergence coefficient computed by a fuzzy PI type controller was proposed.

A Study on the Active Noise Cancellation System in a Vehicle Cabin Using the Weighting Factors of Control Error Path (제어오차계의 가중치를 이용한 차실내 능동소음제어 시스템 연구)

  • 홍석윤;허현무
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.851-856
    • /
    • 1996
  • The active noise cancellation system showing the effective convergence and stability has been studied by simplifying the controller structures using the weighting factors of control error path to the multi-channel filtered-x LMS algorithm which needs a lot of calculations and the performance has been verified experimentally. Besides, to implement the system performance in a vehicle cabin, experimental work for selecting the suitable numbers and positions of the microphones and speakers was accomplished. Effectively combining a TMS 320C 31 main processor conducting real number calculations and having various functions with other components, the purpose-built system board for active noise cancellation has been designed and with this board, car active noise cancellation system showing maximum stable 10dB noise reduction has been obtained at the car idling conditions above 3000rpm range.

  • PDF

A Robustness Improvement of Adjoint-LMS Algorithms for Active Noise Control (능동소음제어를 위한 Adjoint-LMS 알고리즘의 강인성 개선)

  • Moon, Hak-ryong;Shon, Jin-geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.171-177
    • /
    • 2016
  • Noise problem that occurs in living environment is a big trouble in the economic, social and environmental aspects. In this paper, the filtered-X LMS algorithms, the adjoint LMS algorithms, and the robust adjoint LMS algorithms will be introduced for applications in active noise control(ANC). The filtered-X LMS algorithms is currently the most popular method for adapting a filter when the filter exits a transfer function in the error path. The adjoint LMS algorithms, that prefilter the error signals instead of divided reference signals in frequency band, is also used for adaptive filter algorithms to reduce the computational burden of multi-channel ANC systems such as the 3D space. To improve performance of the adjoint LMS ANC system, an off-line measured transfer function is connected parallel to the LMS filter. This parallel-fixed filter acts as a noise controller only when the LMS filter is abnormal condition. The superior performance of the proposed system was compared through simulation with the adjoint LMS ANC system when the adaptive filter is in normal and abnormal condition.

An Electro-magnetic Air Spring for Vibration Control in Semiconductor Manufacturing (반도체 생산에서 진동 제어를 위한 전자기 에어 스프링)

  • Kim, Hyung-Tae;Kim, Cheol-Ho;Lee, Kang-Won;Lee, Gyu-Seop;Son, Sung-Wan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1128-1138
    • /
    • 2010
  • One of the typical problems in the precise vibration is resonance characteristics at low frequency disturbance due to a heavy mass. An electro-magnetic(EM) air spring is a kind of vibration control unit and active isolator. The EM air spring in this study aims at removing the low frequency resonance for semiconductor manufacturing. The mechanical and electronic parts in the active isolator are designed to operate under a weight of 2.5 tons. The EM spring is floated using air pressure in a pneumatic elastic chamber and actuated by EM levitation force. The actuator consists of a EM coil and a permanent magnetic plate which are installed inside of the chamber. An air mount was constructed for the experiment with a stone surface plate, 4 active air springs, 4 gap sensors, a DSP controller, and a multi-channel power amp. A PD control method and operating logic was applied to the DSP. Simulation using 1/4 model was carried out and compared with the experiments. The time duration and maximum peak at resonance frequency can be reduced sharply by the proposed system. The results show that the active system can avoid the resonance caused by the natural frequency of the passive system.