• Title/Summary/Keyword: Multi-channel Communication

Search Result 804, Processing Time 0.024 seconds

Performance Analysis of an Underwater Acoustic Communication System Combining AMC and STBC Techniques

  • Jung, Jin-Woo;Shim, Tae-Bo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.3E
    • /
    • pp.97-103
    • /
    • 2007
  • We propose a combined STBC (Space Time Block Coding) and AMC (Adaptive Modulation and Coding) in the underwater multipath communication channel. Performance of UAC (underwater acoustic communication) in shallow water is degraded by complicated multipath and reverberation. For this reason, and considering the variability of the ocean channel, we combined STBC and AMC techniques, which are the spatial diversity in a multi-sensor communication system. BER (Bit error rate) of combined STBC and AMC is improved by 5dB when we compare with the BER of a single sensor based system. The proposed system shows a 3dB improvement when we compare it with the BER of the single sensor based system applying the AMC technique only.

On the Optimization of Raman Fiber Amplifier using Genetic Algorithm in the Scenario of a 64 nm 320 Channels Dense Wavelength Division Multiplexed System

  • Singh, Simranjit;Saini, Sonak;Kaur, Gurpreet;Kaler, Rajinder Singh
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.118-123
    • /
    • 2014
  • For multi parameter optimization of Raman Fiber Amplifier (RFA), a simple genetic algorithm is presented in the scenario of a 320 channel Dense Wavelength Division Multiplexed (DWDM) system at channel spacing of 25 GHz. The large average gain (> 22 dB) is observed from optimized RFA with the optimized parameters, such as 39.6 km of Raman length with counter-propagating pumps tuned to 205.5 THz and 211.9 THz at pump powers of 234.3 mW, 677.1 mW respectively. The gain flattening filter (GFF) has also been optimized to further reduce the gain ripple across the frequency range from 190 to 197.975 THz for broadband amplification.

Blind Signal Processing for Impulsive Noise Channels

  • Kim, Nam-Yong;Byun, Hyung-Gi;You, Young-Hwan;Kwon, Ki-Hyeon
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • In this paper, a new blind signal processing scheme for equalization in fading and impulsive-noise channel environments is introduced based on probability density functionmatching method and a set of Dirac-delta functions. Gaussian kernel of the proposed blind algorithm has the effect of cutting out the outliers on the difference between the desired level values and impulse-infected outputs. And also the proposed algorithm has relatively less sensitivity to channel eigenvalue ratio and has reduced computational complexity compared to the recently introduced correntropy algorithm. According to these characteristics, simulation results show that the proposed blind algorithm produces superior performance in multi-path communication channels corrupted with impulsive noise.

Channel Switching Considered Scheduling in Multi-Channel Wireless Sensor Networks (멀티채널 무선 센서 네트워크에서 채널 변경을 고려한 스케줄링 방법)

  • Yeoum, Sanggil;Lee, Hyun;Kim, Dongsoo;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.185-187
    • /
    • 2014
  • 멀티채널 무선 센서 네트워크에서 기존의 스케줄링 방법들은 각 노드마다 다른 채널과 타임슬롯을 할당하는 방법을 채택하여 연구하였다. 하지만 여러 채널과 타임슬롯을 사용함으로써 채널가의 간섭, 채널과 타임슬롯의 할당, 채널 변경에 소모되는 에너지와 딜레이 등 추가로 고려해야할 사항들이 발생하였다. 센서 노드는 저전력의 배터리를 사용하기 때문에 효율적인 채널과 타임슬롯 할당 이외에도 채널 변경에 대해 고려되어야 한다. 본 논문에서는 멀티채널 무선센서네트워크 환경에서 최소한의 채널 변경을 지향하는 효율적인 채널과 타임슬롯을 할당하는 방법을 제안한다.

Design and Performance Analysis of Visible -Light Wireless Communication System using LED

  • Choi, Jae Myoeng
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.147-157
    • /
    • 2018
  • In this study, we analyzed an outdoor visible light communication system and implemented it through a simulation. We designed a Reed-Solomon encoder, a variable interleaver structure, and set it to the Institute of Electrical and Electronics Engineers (IEEE) 802.15.7 PHY I specification mode. We also analyzed the performance of an additive white gaussian noise (AWGN) channel environment using a root-raised-cosine (RRC) filter, implemented a MATLAB simulation and analyzed its performance. The results showed a requirement for an additional signal-to-noise ratio (SNR) of approximately 1.5 dB in a 3-ray multipath visible light channel environment than in an AWGN environment.

Maximization of Zero-Error Probability for Adaptive Channel Equalization

  • Kim, Nam-Yong;Jeong, Kyu-Hwa;Yang, Liuqing
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.459-465
    • /
    • 2010
  • A new blind equalization algorithm that is based on maximizing the probability that the constant modulus errors concentrate near zero is proposed. The cost function of the proposed algorithm is to maximize the probability that the equalizer output power is equal to the constant modulus of the transmitted symbols. Two blind information-theoretic learning (ITL) algorithms based on constant modulus error signals are also introduced: One for minimizing the Euclidean probability density function distance and the other for minimizing the constant modulus error entropy. The relations between the algorithms and their characteristics are investigated, and their performance is compared and analyzed through simulations in multi-path channel environments. The proposed algorithm has a lower computational complexity and a faster convergence speed than the other ITL algorithms that are based on a constant modulus error. The error samples of the proposed blind algorithm exhibit more concentrated density functions and superior error rate performance in severe multi-path channel environments when compared with the other algorithms.

Performance analysis of UWB RAKE Receiver in multi-Path channel (다중 경로 채널환경에서 UWB RAKE 수신기의 성능분석)

  • Oh, Se-Wang;Oh, Tae-Won
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.594-598
    • /
    • 2003
  • In this paper, we analyze the performance of UWB(Ultra-WideBand) communication system employing Bi-phase modulation and RAKE Receiver under the MAI(Multiple Access Interference) and the OSI(Other System Interference) environment. Using the multi-path channel model recommended by IEEE P802.15.TG3a, the performance degradation Is described with the number of users, the number of RAKE fingers and training sequences. To meet BER 10e-4 for 20 users at the same time, the number of RAKE fingers are proposed from 3 to 32. And the number of training sequences are limited less than 8 to keep the channel estimation error within 3dB

  • PDF

Implementation of echo canceller for mobile communications interworking switch network (스위치네트워크와 연동에 의한 이동통신용 반향제거장치 구현)

  • 오돈성;이두수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.2033-2042
    • /
    • 1996
  • In this papre, we describe a recently implemented echo canceller for digital cellular communication of Code Division Multiple Access(CDMA) that features time sharing of digital signal processor(DSP) over four channels in one DSP to reduce per channel costs. In the Public Land Mobile Network(PLMN), it is important to cancel the echo reflected from the Public Switched Telephone Network(PSTN) side. In case of digital mobile system, the round-trip delay of the echo is in excess of about 180 milliseconds due to frame-by-frame voice coding. It is necessary to cancel the echo in PLMN. We have developed a multi-channel echo canceller tht operates with Time Switch Module in a Mobile Switching Center(MSC). The general echo canceller needs PCM trunk interface circuits and the tone detection and disabling circuits, but the multi-channel echo canceller linked with Time Switch Module does not need them. Therefore we could develop the effective and economical echo canceller.

  • PDF

Performance Analysis of Multimedia CDMA Network with Concatenated Coding and RAKE Receiver

  • Roh Jae-Sung;Kim Choon-Gil;Cho Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.139-144
    • /
    • 2004
  • In order to transmit various types of multimedia data (i.e. voice, video, and data) over a wireless channel, the coding and modulation scheme needs to be flexible and capable of providing a variable quality of service, data rates, and latency. In this paper, we study a mobile multimedia COMA network combined with the concatenated Reed-Solomon/Rate Compatible Punctured Convolution code (RS/RCPC). Also, this paper propose the combination of concatenated RS/RCPC coder and COMA RAKE receiver for multimedia COMA traffic which can be sent over wireless channels. From the results, using a frequency selective Rayleigh fading channel model, it is shown that concatenated RS/RCPC coder at the wireless physical layer can be effective in providing reliable wireless multimedia CDMA network. And the proposed scheme that combine concatenated RS/RCPC coder and CDMA RAKE receiver provides a significant gain in the BER performance over multi-user interference and multipath frequency selective fading channels.

Multi-Hop Cooperative Transmission Using Fountain Codes over Rayleigh Fading Channels

  • Duy, Tran Trung;Anpalagan, Alagan;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.14 no.3
    • /
    • pp.267-272
    • /
    • 2012
  • In this paper, we study multi-hop cooperative transmission protocols using fountain codes. The proposed protocols can reduce the end-to-end delay and number of stages compared to those in conventional multi-hop transmission. VariousMonte-Carlo simulations are presented to evaluate and compare performance of the protocols over Rayeigh fading channels.