• Title/Summary/Keyword: Multi-cell flow

Search Result 134, Processing Time 0.022 seconds

Multiparameter Flow Cytometry: Advances in High Resolution Analysis

  • O'Donnell, Erika A.;Ernst, David N.;Hingorani, Ravi
    • IMMUNE NETWORK
    • /
    • v.13 no.2
    • /
    • pp.43-54
    • /
    • 2013
  • Over the past 40 years, flow cytometry has emerged as a leading, application-rich technology that supports high-resolution characterization of individual cells which function in complex cellular networks such as the immune system. This brief overview highlights advances in multiparameter flow cytometric technologies and reagent applications for characterization and functional analysis of cells modulating the immune network. These advances significantly support highthroughput and high-content analyses and enable an integrated understanding of the cellular and molecular interactions that underlie complex biological systems.

Asymptotic Expansion Homogenization of Permeability Tensor for Plain Woven Fabrics (평직에 대한 투과율 계수의 균질화)

  • Song, Young-Seok;Youn, Jae-Roun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.134-136
    • /
    • 2005
  • Homogenization method is adopted to predict the permeability tenor for glass fiber plain woven fabrics. Calculating the permeability tensor numerically is an encouraging task because the permeability tensor is a key parameter in resin transfer molding (RTM). Based on multi-scale approach of the homogenization method, the permeability for the micro-unit cell within fiber tow is computed and compared with that obtained from flow analysis for the same micro-unit cell. It is found that they are in good agreement. In order to calculate the permeability tensor of macro-unit cell for the plain woven fabrics, the Stokes and Brinkman equations which describe inter-tow and intra-tow flow respectively are employed as governing equations. The effective permeabilities homogenized by considering intra-tow flow are compared with those obtained experimentally. Control volume finite element method (CVFEM) is used as a numerical method. It is shown that the asymptotic expansion homogenization method is an attractive method to predict the effective permeability for heterogeneous media.

  • PDF

Alcohol Productivity Using Starchy Raw Material in Pilot Scale Multi-stage CSTR (Pilot Scale Multi-stage CSTR에서 전분질 원료를 이용한 알콜 생산)

  • Nam, Ki-Du;Lee, In-Ki;Cho, Hoon-Ho;Kim, Woon-Sik;Suh, Kuen-Hack;Ryu, Beung-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.80-84
    • /
    • 1994
  • In order to induce the rapid alcohol fermentation through the increases of the cell density in a continuous alcohol fermentation of naked barley, the single-cultivation with S. cerevisiae IS-019(SCM, ordinary control), mixed-cultivation with Saccharomyces uvarum IS-026 having a flocculent ability and S. cerevisiae IS-019(MCM), and mash recirculation by single-cultivation of S. cerevisiae IS-019(MRM) modes were investigated. The cell mass in the mixed-cultivation mode was about 10% higher than that of ordinary control but the final alcohol yield was slightlyl decreased. When recycled the mash with the flow rate of 7 l/h from V$_{6}$ to V$_{5}$ fermentors under the ordinary control, the cell density was distributed at 140~170$\times $10$^{6}$ cell/ml depending upon the fermentorsorders, higher about 20% than that of the ordinary control. Under these conditions the alcohol productivity of the maximum and the overall was 12.16 g/l$\cdot $h with an alcohol of 7.6% at the V$_{5}$ fermentor and 1.19 g/l$\cdot $h with an alcohol of 8.94%, respectively. For higher cell mass it was more effective to apply the mash recirculation mode with the single-cultivation of S. cerevisiae IS-019 in a pilot scale multi-stage CSTR.

  • PDF

NUMERICAL STUDY ON THE FLOW CHARACTERISTICS OF MANIFOLD FEED-STREAM IN POLYMER ELECTROLYTE FUEL CELL (고분자 전해질 연료전지의 매니폴드 설계 및 해석)

  • JUNG Hye-Mi;UM Sukkee;PARK Jungsun;LEE Won-Yong;KIM Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.260-263
    • /
    • 2005
  • The effects of internal manifold designs the reactant feed-stream in Polymer Electrolyte Fuel Cells (PEFCs) is studied to figure out mass flow-distribution patterns over an entire fuel cell stack domain. Reactants flows are modeled either laminar or turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-determined for computational analysis. In this work, numerical models for reactant feed-stream in the PEFC manifolds are classified into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain information on the optimal design and operation of a PEMC system.

  • PDF

Numerical Study on the Thermal and Flow Characteristics of Manifold Feed-Stream in Polymer Electrolyte Fuel Cells (고분자 전해질 연료전지 매니폴드의 열유동 특성에 관한 수치적 연구)

  • Jung Hye-Mi;Um Sukkee;Sohn Young-Jun;Park Jungsun;Lee Won-Yong;Kim Chang-Soo
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.41-52
    • /
    • 2005
  • The effects of internal manifold designs on the reactants feed-stream in Polymer Electrolyte Fuel Cells [PEFCs] is studied to figure out flow and thermal distribution patterns over an entire fuel cell stack. Reactants flows are modeled either laminar of turbulent depending on regions and the open channels in the bipolar plates are simulated by porous media where permeability should be pre-deter-mined for computational analysis. In this work, numerical models for reactants feed-stream In the PEFC manifolds are classified Into two major flow patterns: Z-shape and U-shape. Several types of manifold geometries are analyzed to find the optimal manifold configurations. The effect of heat generation in PEFC on the flow distribution is also Investigated applying a simplified heat transfer model in the stack level (i.e. multi-cell electrochemical power-generation unit). This modeling technique Is well suited for many large scale problems and this scheme can be used not only to account for the manifold flow pattern but also to obtain Information on the optimal design and operation of PEFC systems.

  • PDF

Process Management Systems for Integrated Real-Time Shop Operations in Heterogeneous Multi-Cell Based Flexible Manufacturing Environment (이기종 멀티 셀 유연생산환경에서의 실시간 통합운용을 위한 공정관리 체계)

  • Yoon, Joo-Sung;Nam, Sung-Ho;Baek, Jae-Yong;Kwon, Ki-Eok;Lee, Dong-Ho;Lee, Seok-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.281-286
    • /
    • 2013
  • As the product lifecycle is getting shorter and various models should be released to respond to the needs of customers and markets, automation-based flexible production line has been recognized as the core competitiveness. According to these trends, system vendors supply cell-level systems such as FMC(Flexible Manufacturing Cell) that is integration of core functions of FMS(Flexible Manufacturing System) and RMC(Reconfigurable Manufacturing Cell) that can easily extend components of FMC. In the cell-based environment, flexible management for shop floor composed of existing job shop, FMCs and RMCs from various system vendors has emerged as an important issue. However, there could be some problems on integrated operation between heterogeneous cells to use vendor-specific cell controllers and on seamless information flow with high level systems such as ERP(Enterprise Resource Planning). In this context, this paper proposes process management systems supporting integrated shop operation of heterogeneous multi-cell based flexible manufacturing environment: First of all, (1) Integrated Shop Operation System to apply the process management system is introduced, and (2) Multi-Layer BOP(Bill-Of-Process) model, a backbone of the process management system, is derived with its data structure. Finally, application of the proposed model is illustrated through system implementation results.

Numerical Study of Land/Channel Flow-field Optimization in Polymer Electrolyte Fuel Cells (PEFCs) (I) -The Effects of Land/Channel Flow-field on Current Density and HFR Distributions- (고분자전해질형연료전지의 가스 채널 최적화를 위한수치적연구(I) -가스 채널 치수가 전류밀도와 HFR 분포에 미치는영향성-)

  • Ju, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.683-694
    • /
    • 2008
  • The performance and durability of Polymer Electrolyte Fuel Cells (PEFCs) are strongly influenced by the uniformity of current density, temperature, species distributions inside a cell In order to obtain uniform distributions in them, the optimal design of flowfield must be a key factor. In this paper, the numerical study of land/channel flowfield optimizations is performed, using a multi-dimensional, multi-phase, non-isothermal PEFC model. Numerical simulations reveal more uniform current density and HFR(High Frequency Resistance) distributions and thus better PEFC performance with narrower land/channel width where the less severe oxygen depletion effect near the land region and more uniform contact resistance variation along the in-plane direction are achieved. The present study elucidates detailed effects of land/channel width and assist in identifying optimal flow-field design strategies for the operation of PEFCs.

DEVELOPMENT OF THE MULTI-DIMENSIONAL HYDRAULIC COMPONENT FOR THE BEST ESTIMATE SYSTEM ANALYSIS CODE MARS

  • Bae, Sung-Won;Chung, Bub-Dong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1347-1360
    • /
    • 2009
  • A multi-dimensional component for the thermal-hydraulic system analysis code, MARS, was developed for a more realistic three-dimensional analysis of nuclear systems. A three-dimensional and two-fluid model for a two-phase flow in Cartesian and cylindrical coordinates was employed. The governing equations and physical constitutive relationships were extended from those of a one-dimensional version. The numerical solution method adopted a semi-implicit and finite-difference method based on a staggered-grid mesh and a donor-cell scheme. The relevant length scale was very coarse compared to commercial computational fluid dynamics tools. Thus a simple Prandtl's mixing length turbulence model was applied to interpret the turbulent induced momentum and energy diffusivity. Non drag interfacial forces were not considered as in the general nuclear system codes. Several conceptual cases with analytic solutions were chosen and analyzed to assess the fundamental terms. RPI air-water and UPTF 7 tests were simulated and compared to the experimental data. The simulation results for the RPI air-water two-phase flow experiment showed good agreement with the measured void fraction. The simulation results for the UPTF downcomer test 7 were compared to the experiment data and the results from other multi-dimensional system codes for the ECC delivery flow.

CFD Analysis on Two-phase Flow Behavior of Liquid Water in Cathode Channel of PEM Fuel Cell (PEM 연료전지 공기극 유로에서 물의 가동에 대한 CFD 해석)

  • Kim, Hyun-Il;Nam, Jin-Hyun;Shin, Dong-Hoon;Chung, Tae-Yong;Kim, Young-Gyu
    • New & Renewable Energy
    • /
    • v.3 no.4
    • /
    • pp.8-15
    • /
    • 2007
  • Liquid water in flow channel is an important factor that limits the steady and transient performance of PEM fuel cells. A computational fluid dynamics study based on the volume-of-fluid [VOF] multi-phase model was conducted to understand the two-phase flow behavior of liquid water in cathode gas channels. The liquid water transport in $180^{\circ}{\Delta}$ bends was investigated, where the effects of surface characteristics (hydrophilic and hydrophobic surfaces], channel geometries (rectangular and chamfered corners], and air velocity in channel were discussed. The two-phase flow behavior of liquid water with hydrophilic channel surface and that with hydrophobic surface was found very different; liquid water preferentially flows along the corners of flow channel in hydrophilic channels while it flows in rather spherical shape in hydrophobic channels. The results showed that liquid water transport was generally enhanced when hydrophobic channel with rounded corners was used. However, the surface characteristics and channel geometries became less important when air velocity was increased over 10m/s. This study is believed to provide a useful guideline for design optimization of flow patterns or channel configurations of PEM fuel cells.

  • PDF

Experimental Study of Natural Convection Due to Combined Buoyancy in a Rectangular Enclosure (직각 밀폐용기내의 복합부력에 의한 자연대류에 관한 실험적 연구)

  • 이진호;현명택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.247-256
    • /
    • 1986
  • An experimental investigation was conducted to study natural convection due to temperature and concentration differences between the two opposite end walls of a rectangular enclosure of aspect ratio 0.2. Flow motion in the enclosure appears as a uni-cell flow pattern for the relatively lower concentration and higher temperature differences and vice versa, while it appears as a multicell flow pattern for the comparable temperature and concentration differences. In the multi-cell flow regime, when the cellular flow motiion is very slow, vertical temperature differences within the cells are negligible while the vertical concentration differences are large. In addition, both the temperature and concentration differences are negligible across the interface between the slowly moving cells. For the fast moving cellular flow motion, on thel contrary, vertical temperature differences within the cells are large while the vertical concentration differences are negligible. In this case, temperature differences are negligible and the concentration differences are large across the interface between the fase moving cells.