• Title/Summary/Keyword: Multi-cameras observation system

Search Result 5, Processing Time 0.021 seconds

Cavitation in Pump Inducer with Axi-asymmetrical Inlet Plate Observed by Multi-cameras

  • Kim, Jun-Ho;Atono, Takashi;Ishizaka, Koichi;Watanabe, Satoshi;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • The attachment of inducer in front of main impeller is a powerful method to improve cavitation performance; however, cavitation surge oscillation with low frequency occurs with blade cavity growing to each throat section of blade passage simultaneously. Then, one conceptual method of installing suction axi-asymmetrical plate has been proposed so as to keep every throat passage away from being unstable at once, and the effect on suppression of the oscillation were investigated. In the present study, cavitation behaviors in the inducer is observed with distributing multi-cameras circumferentially, recording simultaneously and reconstructing multi-photos on one plane field as moving a linear cascade. Observed results are utilized for discussion with other measuring results as casing wall pressure distribution. Then the suppression mechanism of oscillation by installing axi-asymmetrical inlet plate will be clarified in more details.

A study on aerial triangulation from multi-sensor imagery

  • Lee, Young-ran;Habib, Ayman;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.400-406
    • /
    • 2002
  • Recently, the enormous increase in the volume of remotely sensed data is being acquired by an ever-growing number of earth observation satellites. The combining of diversely sourced imagery together is an important requirement in many applications such as data fusion, city modeling and object recognition. Aerial triangulation is a procedure to reconstruct object space from imagery. However, since the different kinds of imagery have their own sensor model, characteristics, and resolution, the previous approach in aerial triangulation (or georeferencing) is performed on a sensor model separately. This study evaluated the advantages of aerial triangulation of large number of images from multi-sensors simultaneously. The incorporated multi-sensors are frame, push broom, and whisky broom cameras. The limits and problems of push-broom or whisky broom sensor models can be compensated by combined triangulation with frame imagery and vise versa. The reconstructed object space from multi-sensor triangulation is more accurate than that from a single model. Experiments conducted in this study show the more accurately reconstructed object space from multi-sensor triangulation.

  • PDF

A Study on Aerial Triangulation from Multi-Sensor Imagery

  • Lee, Young-Ran;Habib, Ayman;Kim, Kyung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.255-261
    • /
    • 2003
  • Recently, the enormous increase in the volume of remotely sensed data is being acquired by an ever-growing number of earth observation satellites. The combining of diversely sourced imagery together is an important requirement in many applications such as data fusion, city modeling and object recognition. Aerial triangulation is a procedure to reconstruct object space from imagery. However, since the different kinds of imagery have their own sensor model, characteristics, and resolution, the previous approach in aerial triangulation (or georeferencing) is purformed on a sensor model separately. This study evaluated the advantages of aerial triangulation of large number of images from multi-sensors simultaneously. The incorporated multi-sensors are frame, push broom, and whisky broom cameras. The limits and problems of push-broom or whisky broom sensor models can be compensated by combined triangulation with other sensors The reconstructed object space from multi-sensor triangulation is more accurate than that from a single model. Experiments conducted in this study show the more accurately reconstructed object space from multi-sensor triangulation.

Efficient Multi-spot Monitoring System Using PTZ Camera and Wireless Sensor Network (PTZ 카메라와 무선 센서 네트워크를 이용한 효율적인 다중 지역 절전형 모니터링 시스템)

  • Seo, Dong-kyu;Son, Cheol-su;Yang, Su-yeong;Cho, Byung-lok;Kim, Won-jung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.581-584
    • /
    • 2009
  • Recently, the cameras which used for observation are installed in children protection area and local crime prevention area in order to protect life and property and by its work being recognized and are installed more. Normal cameras have cost problem to observe multiple area and detail, because they can observe only one place. PTZ camera can observe multiple area by moving focus by schedule or remote control, but it can't automatically move the focus of it to the place where event occurred, because it can't recognize the place. In this study, we can monitor multiple area effectively, by installing a wireless sensor node equipped with temperature, lighting, gas and human detection sensor to each area, to monitor many place low-price and actively and to move the focus of PTZ camera to preset position, and send recorded video to the user, when the various sensor data received from wireless sensors in observation area are to be determined abnormal by analyzing. In addition, at night we can record a scene using infrared, but to reduce power consumption of lighting system which are installed to improve resolution, it supplies power to the lighting system when event occurred. So we were able to implement low power green monitoring system.

  • PDF

Opto-mechanical Analysis for Primary Mirror of Earth Observation Camera of the MIRIS (MIRIS EOC 주경의 광기계 해석)

  • Park, Kwi-Jong;Moon, Bong-Kon;Park, Sung-Jun;Park, Young-Sik;Lee, Dae-Hee;Ree, Chang-Hee;Nah, Jak-Young;Jeong, Woog-Seob;Pyo, Jeong-Hyun;Lee, Duk-Hang;Nam, Uk-Won;Rhee, Seung-Wu;Yang, Sun-Choel;Han, Won-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.262-268
    • /
    • 2011
  • MIRIS(Multi-purpose Infra-Red Imaging System) is the main payload of the STSAT-3(Korea Science and Technology Satellite. 3), which is being developed by KASI(Korea Astronomy & Space Institute). EOC(Earth Observation Camera), which is one of two infrared cameras in MIRIS, is the camera for observing infrared rays from the Earth in the range of $3{\sim}5{\mu}m$. The optical system of the EOC is a Cassegrain prescription with aspheric primary and secondary mirrors, and its aperture is 100mm. A ring type flexure supports the EOC primary mirror with pre-loading in order to withstand expected load due to the shock and vibration from the launcher. Here we attempt to use the same mechanism by which a retainer supports the lens. Through opto-mechanical analysis it was confirmed that the EOC primary mirror is effectively supported.