• Title/Summary/Keyword: Multi-body dynamics simulation

Search Result 149, Processing Time 0.031 seconds

Development of Analytical Model of Spindle and Rack Gear Systems for Knuckle Boom Crane (굴절식 크레인의 스핀들과 랙 기어 응력 해석 모델 개발)

  • An, Junwook;Lee, Kwang Hee;Gyu, Yusung;Jo, Je Sang;Lee, Chul Hee
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a flexible multi-body dynamic simulation model of a knuckle boom crane is developed to evaluate the stress of spindle and rack gears under dynamic working conditions. It is difficult to predict potential critical damage to a knuckle boom crane if only the static condition is considered during the development process. To solve this issue, a severe working scenario (high speed with heavy load) was simulated as a boundary condition for testing the integrity of the dynamic simulation model. The crane gear model is defined as a flexible body so contact analysis was performed. The functional motion of a knuckle boom crane is generated by applying forces at each end of the rack gear, which was converted from hydraulic pressure measured for the experiment. The bending and contact stress of gears are theoretically calculated to validate the simulation model. In the simulation, the maximum stress of spindle and rack gears are observed when the crane abruptly stops. Peak impact force is produced at the contact interface between pinion and rack gears due to the inertia force of the boom. However, the maximum stress (bending/contact) of spindle and rack are under the yield stress, which is safe from damage. By using the developed simulation model, the experiment process is expected to be minimized.

Study on the Applicability of a New Multi-body Dynamics Program Through the Application to the Heave Compensation System (상하동요 감쇠장치 적용을 통한 새로운 다물체동역학 프로그램의 적용성 검토)

  • Ku, Nam-Kug;Ha, Sol;Roh, Myung-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.247-254
    • /
    • 2013
  • In this paper, dynamic response analysis of a heave compensation system is performed for offshore drilling operations based on multibody dynamics. With this simulation, the efficiency of the heave compensation system can be virtually confirmed before it is applied to drilling operations. The heave compensation system installed on a semi-submersible platform consists of a passive and an active heave compensator. The passive and active heave compensator are composed of several bodies that are connected to each other with various types of joints. Therefore, to carry out the dynamic response analysis, the dynamics kernel was developed based on mutibody dynamics. To construct the equations of motion of the multibody system and to determine the unknown accelerations and constraint forces, the recursive Newton-Euler formulation was adapted. Functions of the developed dynamics kernel were verified by comparing them with other commercial dynamics kernels. The hydrostatic force with nonlinear effects, the linearized hydrodynamic force, and the pneumatic and hydraulic control forces were considered as the external forces that act on the platform of the semi-submersible rig and the heave compensation system. The dynamic simulation of the heave compensation system of the semi-submersible rig, which is available for drilling operations with a 3,600m water depth, was carried out. From the results of the simulation, the efficiency of the heave compensation system were evaluated before they were applied to the offshore drilling operations. Moreover, the calculated constraint forces could serve as reference data for the design of the mechanical system.

Analysis of Rocket Booster Separation from Air-Breathing Engine with Kane's Method (Kane 다물체 동력학을 이용한 공기흡입식 추진기관 부스터 분리에 관한 연구)

  • Choi, Jong-Ho;Lim, Jin-Shik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.41-49
    • /
    • 2009
  • The present paper describes a mathematical modeling and simulation of the separation of a solid rocket booster from an air breathing engine vehicle. The vehicle and booster are considered as a multi-connected body and the booster is assumed to move only along the axial direction of the vehicle. The dynamic motion of the vehicle and the booster were modeled by using Kane's method. The aerodynamic forces on the whole system along various positions of booster were calculated by using DATCOM software and the internal pressure force acting on the effective surface during separation was simply calculated with gas dynamics and Taylor MacColl equation. Numerical simulation was done by using Mathworks-Matlab. From the result, the variation of Mach number and angle of attack are not large during the separation, so the variation of pitch angle and the characteristics of inlet flow for varying the Mach number and angle of attack during the separation test can be identified as neglectable values.

Multi-flexible Dynamic Modeling and Wheel Load Analysis of a Rubber Tired Gantry Crane in Container Cargo Working (컨테이너 하역작업 시 갠트리 크레인의 유연다물체 동역학 모델링 및 윤하중 해석)

  • Kim, Jungyun;Kim, Jingon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.379-384
    • /
    • 2014
  • This article describes the dynamic behaviors of a rubber tired gantry crane(RTGC) under typical load conditions which are used in the design of gantry cranes. In order to investigate the dynamic characteristics of an RTGC, we developed a finite element crane model for its huge structure. The finite element model was validated with the modal test results, e.g., natural frequencies and normal modes. And other components of RTGC were converted into detailed 3D CAD models and finally transformed to rigid body models in a dynamic simulation program ADAMS. The load conditions considered in this paper were a normal operating condition(OP1) and container hanging condition with no external loads. As a result, we could find there was large influence of crane's vibration owing to its structural stiffness and deformation. And the vibration of crane could made the movements of RTGC, which occurs crash or malfunction of crane works.

Pedestrians Trajectory Characteristic for Vehicle Configuration and Pedestrian Postures (차량형상과 충돌형태에 따른 보행자 거동 특성에 관한 연구)

  • Yoo Jangseok;Park Gyung-Jin;Chang Myungsoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.8-18
    • /
    • 2005
  • Pedestrians involved in traffic accidents manifest unique trajectory characteristics depending on the collision speed, vehicle configuration, and pedestrian postures. However, the existing analytical models for pedestrian movements do not fully include the rotational characteristics of the pedestrians because they assume a two dimensional parabolic trajectory. This faulty assumption in the development of these models limits their applicability and reliability This study investigated the pedestrians movement at collision by computer simulation. The simulations are carried out by using HADYMO, which is a special simulation software system for dynamic movement analysis. Vehicles and pedestrians are modeled and verified via real crash worthiness experiments. Simulations are performed for various collision speeds, vehicle configuration, and pedestrian postures. Since the simulation uses multi-body dynamics, It can express irregular phenomena of the bodies quite well. The results can be exploited for vehicle design and traffic accident reconstruction.

Dynamic Response Analyses of Fixed Type Substructures for 2.5MW Class Offshore Wind Turbine

  • Song, Chang Yong;Yoo, Jaehoon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.15-24
    • /
    • 2017
  • This paper explores a series of numerical simulations of dynamic responses of multi-piles (dolphin) type substructures for 2.5MW class offshore wind turbine. Firstly computational fluid dynamics (CFD) simulation was performed to evaluate wave loads on the dolphin type substructures with the design wave condition for the west-south region of Korea. Numerical wave tank (NWT) based on CFD was adopted to generate numerically a progressive regular wave using a virtual piston type wave maker. It was found that the water-piercing area of piles of the substructure is a key parameter determining the wave load exerted in horizontal direction. In the next the dynamic structural responses of substructure members under the wave load were calculated using finite element analysis (FEA). In the FEA approach, the dynamic structural responses were able to be calculated including a deformable body effect of substructure members when wave load on each member was determined by Morison's formula. The paper numerically identifies dynamic response characteristics of dolphin type substructures for 2.5MW class offshore wind turbine.

IRK vs Structural Integrators for Real-Time Applications in MBS

  • Dopico D.;Lugris U.;Gonzalez M.;Cuadrado J.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.388-394
    • /
    • 2005
  • Recently, the authors have developed a method for real-time dynamics of multibody systems, which combines a semi-recursive formulation to derive the equations of motion in dependent relative coordinates, along with an augmented Lagrangian technique to impose the loop closure conditions. The following numerical integration procedures, which can be grouped into the so-called structural integrators, were tested : trapezoidal rule, Newmark dissipative schemes, HHT rule, and the Generalized-${\alpha}$ family. It was shown that, for large multi body systems, Newmark dissipative was the best election since, provided that the adequate parameters were chosen, excellent behavior was achieved in terms of efficiency and robustness with acceptable levels of accuracy. In the present paper, the performance of the described method in combination with another group of integrators, the Implicit Runge-Kutta family (IRK), is analyzed. The purpose is to clarify which kind of IRK algorithms can be more suitable for real-time applications, and to see whether they can be competitive with the already tested structural family of integrators. The final objective of the work is to provide some practical criteria for those interested in achieving real-time performance for large and complex multibody systems.

Performance Analysis and Pitch Control of Dual-Rotor Wind Turbine Generator System (Dual-Rotor 풍력 발전 시스템 성능 해석 및 피치 제어에 관한 연구)

  • Cho, Yun-Mo;No, Tae-Soo;Jung, Sung-Nam;Kim, Ji-Yon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.40-50
    • /
    • 2005
  • In this paper, preliminary results for performance prediction of a dual-rotor wind turbine generator system are presented. Blade element and momentum theories are used to model the aerodynamic forces and moments acting on the rotor blades, and multi-body dynamics approach is used to integrate the major components to represent the overall system. Not only the steady-state performance but the transient response characteristics are analyzed. Pitch control strategy to control the rotor speed and the generator output is proposed and its performance is verified through the nonlinear simulation.

The Development and Evaluation of the Active Gait Training System for the Patients with Gait Disorder (보행 장애인을 위한 능동형 보행훈련 시스템 개발 및 평가)

  • Hwang, S.J.;Tae, K.S.;Kang, S.J.;Kim, J.Y.;Hwang, S.H.;Kim, H.I.;Park, S.W.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.218-228
    • /
    • 2007
  • Modem concepts of gait rehabilitation after stroke favor a task-specific repetitive approach. In practice, the required physical effort of the therapists limits the realization of this approach. Therefore, a mechanized gait trainer enabling nonambulatory patients to have the repetitive practice of a gait-like movement without overstraining therapists was constructed. In this study, we developed an active gait training system for patients with gait disorder. This system provides joint movements to patients who cannot carry out an independent gait. It provides a normal stance-swing ratio of 60:40 using an eccentric configuration of two gears. Joint motions of the knee and the ankle were evaluated with using the 3D motion analysis system and compared with the results from the multi-body dynamics simulation. In addition, clinical investigations were also performed for low stroke patients during the 6-week gait training. Results from the dynamics simulation showed that joint movements of the knee and the ankle were affected by the gear size, the step length and the length of the foot plate, except the radius of curvature of the foot guide plate. Also, the 6-week gait training revealed relevant improvements of the gait ability in all low subjects. Functional ambulation category levels of subjects after training were 2 in three patients and 1 in a patient. The developed active gait trainer seems feasible as an adjunctive tool in gait rehabilitation after stroke.

Co-simulation of MultiBody Dynamics and Plenteous Sphere of Contacted Particles Using NVIDIA GPGPU (NVIDIA 의 GPGPU 를 이용한 수 많은 구형 접촉 입자가 포함된 다물체 동역학 해석)

  • Park, Ji-Soo;Yoon, Joon-Shik;Choi, Jin-Hwan;Rhim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.465-474
    • /
    • 2012
  • In this study, a dynamic simulation model that considers many spherical particles and multibody dynamics (MBD) entities is developed. Plenteous spherical particles are solved using the Discrete Element Method (DEM) technique and simulated on a GPU board in a PC. A fast algorithm is used to calculate the Hertzian contact forces between many spherical particles, and NVIDIA CUDA is used to increase the calculation speed. The explicit integration method is applied to solve the many spheres. MBD entities are simulated by recursive formulation. Constraints are reduced by recursive formulation, and the implicit generalized alpha method is applied to solve the dynamic model. A new algorithm is developed to simulate the DEM and MBD models simultaneously. As a numerical example, a truck car model and gear model are developed. The results show that the proposed algorithm using a general-purpose GPU in a PC has many advantages.