• Title/Summary/Keyword: Multi-body dynamic analysis

Search Result 263, Processing Time 0.034 seconds

A Study on the Kinematic Envelope of the Railway Vehicle (철도차량의 Kinematic Envelope에 관한 연구)

  • 양희주;이강운;박길배
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.863-869
    • /
    • 2002
  • Studied in this paper was the kinematic envelope of the railway vehicle to calculate the lateral displacement using the multi-body dynamic simulation program (VAMPIRE) and the BASS 501. The lateral displacement of railway vehicle is occurred by the clearance between wheel flange and rail, the track irregularity, the property of each suspension of vehicle and the cant of track etc. The results of analysis shown that Vehicle is not interfere with subway platform in any conditions namely the tare and full load condition, the wheel wear condition and the stationary and running of vehicle.

  • PDF

Development of single axle bogie (1축 대차의 개발)

  • 양희주;임용규;김진태;오형식;오택렬
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.125-134
    • /
    • 2000
  • This paper presents the results of vehicle dynamics simulation for development of single axle bogie for freight vehicle. Those results consists of hunting stability, ride comfort and curving performance such as derailment ratio, unloading ratio. Dynamic behaviors of vehicle having single axle bogie is carried out using the multi-body dynamics simulation program(VAMPIRE). The results of analysis meet the criteria proposed by Korean National Railroad(KNR) and Korea Railroad Research Institute(KRRI).

  • PDF

Development of a Washout Algorithm Using the Signal Compression Method

  • Kang, Eu-Gene;You, Ki-Sung;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.101.1-101
    • /
    • 2002
  • Vehicle driving simulator is a virtual reality device which makes a human being feel as if the one drives a vehicle actually. Unlike actual vehicle, the simulator has limited kinematic workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model fully. In order to overcome these problems, washout algorithm which restricts workspace of the simulator within the kinematic limits is needed, and analysis of dynamic characteristics is required also. However, it is difficult to select the proper cutoff frequency of filters in washout algorithm. This paper introduces the signal compression method as an effective method to analyze the sim...

  • PDF

Behavior of Belt Running over the Rollers (롤러 위를 주행하는 벨트의 거동)

  • 윤여훈;윤준현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.900-905
    • /
    • 2004
  • Development of color printer, postal classification machine, ATM and so on requires higher moving performance of the flat belt. Skew of the flat belt running over misaligned roller has a bad effect on performances of media transport. The vibration of loose side of belt causes the escape of the belt from roller and the drop of velocity of driven roller after the start of driving roller revolution. The skew of flat belt is investigated by FEM and dynamic simulation. FEM results show parameters which affect the skew of belt and match with dynamic results qualitatively. The shape of loose side of belt can be found by dynamic simulation. Increase of the acceleration time and initial tension have diminished the unstable movement of the loose side of belt.

  • PDF

Analysis on running safety of train on bridge with wind barriers subjected to cross wind

  • Zhang, T.;Xia, H.;Guo, W.W.
    • Wind and Structures
    • /
    • v.17 no.2
    • /
    • pp.203-225
    • /
    • 2013
  • An analysis framework for vehicle-bridge dynamic interaction system under turbulent wind is proposed based on the relevant theory of wind engineering and dynamics. Considering the fluctuating properties of wind field, the stochastic wind velocity time history is simulated by the Auto-Regressive method in terms of power spectral density function of wind field. The bridge is represented by three-dimensional finite element model and the vehicle by a multi-rigid-body system connected by springs and dashpots. The detailed calculation formulas of unsteady aerodynamic forces on bridge and vehicle are derived. In addition, the form selection of wind barriers, which are applied as the windbreak measures of newly-built railways in northwest China, is studied based on the suggested evaluation index, and the suitable values about height and porosity rate of wind barriers are studied. By taking a multi-span simply-supported box-girder bridge as a case study, the dynamic response of the bridge and the running safety indices of the train traveling on the bridge with and without wind barriers are calculated. The limit values of train speed with respect to different wind velocities are proposed according to the allowance values in the design code.

Vibration simulation of a multi-story high-speed railway station

  • Gao, Mangmang;Xiong, Jianzhen;Xu, Zhaojun
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.365-372
    • /
    • 2010
  • Station is an important building in high-speed railway, and its vibration and noise may significantly affect the comfort of waiting passengers. A coupling vibration model for train-structure system is established to analyze and evaluate the vibration level of a typical waiting hall under dynamic train load. The motion of a four-axle vehicle with two suspension system is modeled in multi-body dynamics with linear springs and dampers employed. The station is modeled as a whole finite element structure which is 113 m in longitudinal and 163.5 m in lateral, and the stiffness of the station foundation is considered. According to the assumptions that both wheel and rail are rigid bodies and keep contact to each other in vertical direction, and the wheel/rail interaction and displacement coordination in horizontal direction is defined by the simplified Kalker creep theory, the vehicle spatial vibration model has 27 degrees-of-freedom. An overall analysis procedure is made of the train moving through the station, by which the dynamic responses of the train and the station are calculated. According to the comparison between analysis and test results, the actual connection status between different parts of the station is estimated and the vibration level of the waiting hall is evaluated.

Dynamic Behavior Analysis of the Auto-leveling System for Large Scale Transporter Type Platform Equipment on the Ground Slope (경사지에서 운용 가능한 대형 차량형 플랫폼 장비 자동수평조절장치의 동적 거동)

  • Ha, Taewan;Park, Jungsoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.502-515
    • /
    • 2020
  • To identify the dynamic characteristics of the Auto-leveling system applied to the Tractor-Trailer type Transporter for mounting a large scale precision equipment, Dynamics Modeling & Simulation were performed using general Dynamics Analysis Program - RecurDyn(V9R2). The axial load data, transverse load data and pad trace data of leveling actuators were obtained from M&S. And they were analyzed and compared with each other by parameters, i.e. friction coefficients on the ground, landing ram speed of actuators, and direction & quantity of ground slope. It was observed that ground contact friction coefficients affected to transverse load and pad trace; the landing ram speed of actuators to both amplitude of axial & transverse load, and this phenomena was able to explain from the frequency analysis of the axial load data; the direction of ground slope to driving sequence of landing ram of actuators. But the dynamic behaviors on the two-directional slope were very different from them on the one-directional slope and more complex.

Dynamic Analysis of a 4-Axis Nano Imprinting Stage Mechanism considering Flexibility (유연성을 고려한 4축 나노임프린팅 스테이지의 동적 해석)

  • Park, Sung-Bin;Jeong, Jae-I.;Yim, Hong-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.844-849
    • /
    • 2008
  • A nano-imprinting stage has been widely used in various fields of nano-technology. In this study, A 4-axis nano-imprinting stage is modeled with using the 3D-CAD Tool. Structural components such as an upper-plate, bearings and cross-roller-guides are modeled with finite elements to analyze flexibility effect during the precision stage motion. In addition, Dynamic analysis is executed to reproduce actual motion of 4-axis nano imprinting stage.

  • PDF

The Dynamic Performance Analysis of Bogie Stabilizer (준고속 열차 대차의 Stabilizer 주행성능 분석)

  • Kim, Nam-Po;Kim, Seog-Won
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1550-1556
    • /
    • 2009
  • The sophisticated technologies, ensuring both stability and curving performance, are required for the medium high speed train running on conventional railway line where tangent and curved section mixed together. We can hardly meet the both requirements conflicting each other with the conventional type of bogie. Effective solution is to apply stabilizing mechanism for the bogie design, which increase hunting stability or dynamically critical speed while maintaining curving performance. In this research the numerical analysis by means of multi-body dynamic simulation S/W, experiments by using roller test rig and main line running test have been comprehensively performed for the 200km/h Korean Tilting Train with newly developed stabilizer. The paper proposes the effectiveness of stabilizer and its usefulness based on the results of analyses.

  • PDF

A Study on the Development of Vehicle Dynamic Model for Dynamic Characteristics Analysis of Chassis Parts (샤시부품 동특성 해석을 위한 전차량 해석모델 개발에 관한 연구)

  • Bae, Chul-Yong;Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Na, Byung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.10
    • /
    • pp.958-966
    • /
    • 2007
  • This study presents full vehicle dynamics model for the dynamic characteristic analysis of chassis parts which are suspension and brake system. This vehicle dynamics model is appled to kinematics and quasi-static analysis for each chassis part. In order to develop the vehicle dynamics model, the parameters of each chassis element part which are bush, spring and damper are measured by experiment. Also the wheel forces and moments of 6 DOF are measured at each wheel center. These data are applied to input parameter for vehicle dynamics model. And the verification of the developed model is achieved to comparison with the experimental force data of spring, trailing arm and assist arm by using the load response by strain gauge. These experimental force data are acquired by road test at event surfaces of P/G which are belgian and chuck holes roads.