• 제목/요약/키워드: Multi-body Systems

검색결과 199건 처리시간 0.029초

차량현가장치용 일래스토메릭 부시으이 비선형점탄성 모델연구 (I) -축 방향 모드- (A Study of A Nonlinear Viscoelastic Model for Elastomeric Bushing in Automotive Suspension System (I) -Axial Mode-)

  • 이성범
    • 한국자동차공학회논문집
    • /
    • 제7권5호
    • /
    • pp.154-161
    • /
    • 1999
  • An elastomeric bushing is a device used in automotive suspension systems to cushion the force transmitted from the wheel to the frame of the vehicle. A bushing is an elastomeric hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer suface. The relation between the force applied to the shaft or sleeve and their relative deformation is nolinear and exhibits features of viscoelasticity. Numerical solutions of the boundary value problem represent the exact bushing response for use in the method for determining the force relaxation function of the bushing. The new nonlinear viscoelastic bushing model, which is called Pipkin-Rogers model, is proposed and it is shown that the predictions of the proposed force-displacement relation are in very good agreement with the exact results. This new bushing model is thus very suitable for use in multi-body dynamics codes. The success of the present study for axial mode response suggests that the same approach be applied to other modes, such as torsional or radial modes.

  • PDF

Optimal Power Allocation for Wireless Uplink Transmissions Using Successive Interference Cancellation

  • Wu, Liaoyuan;Wang, Yamei;Han, Jianghong;Chen, Wenqiang;Wang, Lusheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권5호
    • /
    • pp.2081-2101
    • /
    • 2016
  • Successive interference cancellation (SIC) is considered to be a promising technique to mitigate multi-user interference and achieve concurrent uplink transmissions, but the optimal power allocation (PA) issue for SIC users is not well addressed. In this article, we focus on the optimization of the PA ratio of users on an SIC channel and analytically obtain the optimal PA ratio with regard to the signal-to-interference-plus-noise ratio (SINR) threshold for successful demodulation and the sustainable demodulation error rate. Then, we design an efficient resource allocation (RA) scheme using the obtained optimal PA ratio. Finally, we compare the proposal with the near-optimum RA obtained by a simulated annealing search and the RA scheme with random PA. Simulation results show that our proposal achieves a performance close to the near-optimum and much higher performance than the random scheme in terms of total utility and Jain's fairness index. To demonstrate the applicability of our proposal, we also simulate the proposal in various network paradigms, including wireless local area network, body area network, and vehicular ad hoc network.

발바닥 특정 부위 자극이 뇌파에 미치는 효과에 대한 비선형 분석 (Nonlinear analysis of the effects on the brain waves of the stimulation on specific area of the sole of the foot)

  • 오영선;오민석;송태원
    • 혜화의학회지
    • /
    • 제10권1호
    • /
    • pp.365-374
    • /
    • 2001
  • The brain is one of the most complex systems in nature. Brain waves, or the "EEG", are electrical signals that can be recorded from the brain, either directly or through the scalp. The kind of brain wave recorded depends on the behavior of the animal, and is the visible evidence of the kind of neuronal (brain cell) processing necessary for that behavior. But, EEG had been considered as a virtually infinite-dimensional random signal. However, nonlinear dynamics light on dynamical aspects of the human EEG. The methods of nonlinear dynamics provide excellent tolls for the study of multi-variable, complex system such as EEG. In this study, 20 persons seperated in 2 groups were examined with EEG, one group stimulated on specific area of the sole of the foot with footbed inside the shoes. This experiment resulted in at the group stimulated on specific area of the sole of the foot correlation dimension of P4 and O1 channels increased significantly. Therefore. we obserbed that stimulation on specific area of the body had a constant effections on the specific channels.

  • PDF

경계형 차량 구동용 허브 bldc 전동기 구동시스템 설계 (Design of a Hub BLDC Motor Driving Systems for the Patrol Vehicles)

  • 박원석;권영;이상훈;최중경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2013년도 추계학술대회
    • /
    • pp.612-615
    • /
    • 2013
  • 허브(hub) BLDC(Brushless Direct Current) 전동기란 아우터로터 타입 고효율 전동기로 다극의 영구자석으로 이루어진 회전자가 바퀴의 구동축이 되는 직접구동용 모터를 말하며, 휠인모터라고도 불린다. 본 연구에서는 허브모터를 구동축으로 갖는 2륜 또는 3륜 구동체를 구동하기 위한 BLDC 허브모터 속도 제어기를 PIC 마이크로 컨트롤러를 이용하여 설계한다. 구동기는 6 개의 독립된 MOSFET 스위칭소자를 사용하여 구성하며, 게이트 구동회로는 직접 설계하여 경제성을 높인다.

  • PDF

Landscape Planning for Shiwha Migratory Birds Habitat

  • Joo Shin-Ha;Ahn Se-Hyon
    • Journal of the Korean Institute of Landscape Architecture International Edition
    • /
    • 제2호
    • /
    • pp.130-139
    • /
    • 2004
  • Shiwha Lake is an excellent example of a body of water restored from a state of heavy pollution to a cleaner and more ecological state. This paper will explore techniques and methods available to landscape planning for the creation of new migratory birds habitats in Shiwha Lake. Because Shiwha lake is located adjacent to a new industrial site on reclaimed land, any planning effort aimed at restoring bird habitats must carefully consider the existing context. This plan had 3 goals; (1) to restore the coastal environment, (2) to create a habitat for migratory birds, and (3) to administer environmental education programs. To achieve these goals, several objectives were determined and planning criteria were proposed for topology, water environment(fresh, brackish and salt water swamps), zoning(for experts and general visitors), circulations, planting and mounding. The flora and fauna of the site was surveyed, and 5 alternatives were suggested and compared in several aspects. Planting species were carefully selected considering target birds and habitat requirements. In order to increase bio-diversity of the site, the plan proposed multi-staired mounds and extensive drainage systems. Bird watching facilities with natural materials, and the remote observing system using CCTV and the internet were some of the ecological techniques recommended by the plan. The bird watching trails are divided into two different zones for experts and general visitors.

  • PDF

Fast fabrication of amphibious bus with low rollover risk: Toward well-structured bus-boat using truck chassis

  • Mehrmashhadi, Javad;Mallet, Philippe;Michel, Paul;Yousefi, Amin Termeh
    • Smart Structures and Systems
    • /
    • 제24권4호
    • /
    • pp.427-434
    • /
    • 2019
  • This study investigates the structural integrity of the amphibious tour bus under the rollover condition. The multi-purpose bus called Dual Mode Tour Bus (DMTB) which explores on land and water has been designed on top of a truck platform. Prior to the fabrication of new upper body and sailing equipment of DMTB, computational analysis investigates the rollover protection of the proposed structure including superstructure, wheels, and axles. The Computer-Aided Design (CAD) of the whole vehicle model is meshed and preprocessed under high performance using the Altair HyperMesh to attain the best mesh model suited for finite element analysis (FEA) on the proposed system. Meanwhile, the numerical model is analyzed by employing LS-DYNA to evaluate the superstructure strength. The numerical model includes detail information about the microstructure and considers wheels and axles as rigid bodies but excludes window glasses, seats, and interior parts. Based on the simulation analysis and proper modifications especially on the rear portion of the bus, the local stiffness significantly increased. The vehicle is rotated to the contact point on the ground based on the mathematical method presented in this study to save computational cost. The results show that the proposed method of rollover analysis is highly significant not only in bus rollover tests but in crashworthiness studies for other application. The critical impartments in our suggested dual-purpose bus accepted and passed "Economic Commission for Europe (ECE) R66".

Multi-class Classification of Histopathology Images using Fine-Tuning Techniques of Transfer Learning

  • Ikromjanov, Kobiljon;Bhattacharjee, Subrata;Hwang, Yeong-Byn;Kim, Hee-Cheol;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제24권7호
    • /
    • pp.849-859
    • /
    • 2021
  • Prostate cancer (PCa) is a fatal disease that occurs in men. In general, PCa cells are found in the prostate gland. Early diagnosis is the key to prevent the spreading of cancers to other parts of the body. In this case, deep learning-based systems can detect and distinguish histological patterns in microscopy images. The histological grades used for the analysis were benign, grade 3, grade 4, and grade 5. In this study, we attempt to use transfer learning and fine-tuning methods as well as different model architectures to develop and compare the models. We implemented MobileNet, ResNet50, and DenseNet121 models and used three different strategies of freezing layers techniques of fine-tuning, to get various pre-trained weights to improve accuracy. Finally, transfer learning using MobileNet with the half-layer frozen showed the best results among the nine models, and 90% accuracy was obtained on the test data set.

Flutter study of flapwise bend-twist coupled composite wind turbine blades

  • Farsadi, Touraj;Kayran, Altan
    • Wind and Structures
    • /
    • 제32권3호
    • /
    • pp.267-281
    • /
    • 2021
  • Bending-twisting coupling induced in big composite wind turbine blades is one of the passive control mechanisms which is exploited to mitigate loads incurred due to deformation of the blades. In the present study, flutter characteristics of bend-twist coupled blades, designed for load alleviation in wind turbine systems, are investigated by time-domain analysis. For this purpose, a baseline full GFRP blade, a bend-twist coupled full GFRP blade, and a hybrid GFRP and CFRP bend-twist coupled blade is designed for load reduction purpose for a 5 MW wind turbine model that is set up in the wind turbine multi-body dynamic code PHATAS. For the study of flutter characteristics of the blades, an over-speed analysis of the wind turbine system is performed without using any blade control and applying slowly increasing wind velocity. A detailed procedure of obtaining the flutter wind and rotational speeds from the time responses of the rotational speed of the rotor, flapwise and torsional deformation of the blade tip, and angle of attack and lift coefficient of the tip section of the blade is explained. Results show that flutter wind and rotational speeds of bend-twist coupled blades are lower than the flutter wind and rotational speeds of the baseline blade mainly due to the kinematic coupling between the bending and torsional deformation in bend-twist coupled blades.

Design of STM32-based Quadrotor UAV Control System

  • Haocong, Cai;Zhigang, Wu;Min, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권2호
    • /
    • pp.353-368
    • /
    • 2023
  • The four wing unmanned aerial vehicle owns the characteristics of small size, light weight, convenient operation and well stability. But it is easily disturbed by external environmental factors during flight with these disadvantages of short endurance and poor attitude solving ability. For solving these problems, a microprocessor based on STM32 chip is designed and the overall development is completed by the resources such as built-in timer and multi-function mode general-purpose input/output provided by the master micro controller unit, together with radio receiver, attitude meter, barometer, electronic speed control and other devices. The unmanned aerial vehicle can be remotely controlled and send radio waves to its corresponding receiver, control the analog level change of its corresponding channel pins. The master control chip can analyze and process the data to send multiple sets pulse signals of pulse width modulation to each electronic speed control. Then the electronic speed control will transform different pulse signals into different sizes of current value to drive the motor located in each direction of the frame to generate different rotational speed and generate lift force. To control the body of the unmanned aerial vehicle, so as to achieve the operator's requirements for attitude control, the PID controller based on Kalman filter is used to achieve quick response time and control accuracy. Test results show that the design is feasible.

Moving reactor model for the MULTID components of the system thermal-hydraulic analysis code MARS-KS

  • Hyungjoo Seo;Moon Hee Choi;Sang Wook Park;Geon Woo Kim;Hyoung Kyu Cho;Bub Dong Chung
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4373-4391
    • /
    • 2022
  • Marine reactor systems experience platform movement, and therefore, the system thermal-hydraulic analysis code needs to reflect the motion effect on the fluid to evaluate reactor safety. A moving reactor model for MARS-KS was developed to simulate the hydrodynamic phenomena in the reactor under motion conditions; however, its applicability does not cover the MULTID component used in multidimensional flow analyses. In this study, a moving reactor model is implemented for the MULTID component to address the importance of multidimensional flow effects under dynamic motion. The concept of the volume connection is generalized to facilitate the handling of the junction of MULTID. Further, the accuracy in calculating the pressure head between volumes is enhanced to precisely evaluate the additional body force. Finally, the Coriolis force is modeled in the momentum equations in an acceleration form. The improvements are verified with conceptual problems; the modified model shows good agreement with the analytical solutions and the computational fluid dynamic (CFD) simulation results. Moreover, a simplified gravity-driven injection is simulated, and the model is validated against a ship flooding experiment. Throughout the verifications and validations, the model showed that the modification was well implemented to determine the capability of multidimensional flow analysis under ocean conditions.