• 제목/요약/키워드: Multi-body Dynamics Modeling

검색결과 59건 처리시간 0.029초

GL 2010 기반 대형 풍력터빈 드라이브트레인 시스템 다물체 동역학 해석기법 (Multi-body Dynamic Analysis for the Drivetrain System of a Large Wind Turbine Based on GL 2010)

  • 정대하;김동현;김명환
    • 한국소음진동공학회논문집
    • /
    • 제24권5호
    • /
    • pp.363-373
    • /
    • 2014
  • In this study, computational multi-body dynamic analyses for the drivetrain system of a 5 MW class offshore wind turbine have been conducted using efficient equivalent modeling technique based on the design guideline of GL 2010. The present drivetrain system is originally modeled and its related system data is adopted from the NREL 5 MW wind turbine model. Efficient computational method for the drivetrain system dynamics is proposed based on an international guideline for the certification of wind turbine. Structural dynamic behaviors of drivetrain system with blade, hub, shaft, gearbox, supports, brake disk, coupling, and electric generator have been analyzed and the results for natural frequency and equivalent torsional stiffness of the drivetrain system are presented in detail. It is finally shown that the present multi-body dynamic analysis method gives good agreement with the previous results of the 5 MW class wind turbine system.

와이퍼 블레이드의 누름압 해석 (Contact Pressure Analysis of a Windshield Wiperblade)

  • 이병수;신진용
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.51-57
    • /
    • 2006
  • The contact pressure distribution between a rubber wiper blade and a glass windshield is a major factor for wiping performance. A modeling and simulation method has been developed to forecast the contact pressure distribution on a wiper blade. For modeling multi-body dynamics of an wiper linkage system and flexible nature of wiper blade, ADAMS and ADAMS/flex are employed. A simulation study has been also conducted to obtain contact pressure distribution. Comparison between simulation and measurement is provided to ensure fidelity of the model and the simulation method.

철도차량 동특성 해석을 위한 휠/레일 상호작용의 선형모델링 연구 (A Study on the Linear Modeling of Wheel/Rail Interaction for the Train Dynamics)

  • 박찬경;박기준;박준서;배대성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.517-524
    • /
    • 1998
  • A liner numerical model of the wheel-rail interation and the track geometry is developed for multi-body dynamics program. The simulation results are very simulation to these of VAMPIRE simulation. This program can be used for the analysis of train dynamic performance.

  • PDF

Development of a Multibody Dynamics Program Using the Object-Oriented Modeling

  • Han, Hyung-Suk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권6호
    • /
    • pp.61-70
    • /
    • 2003
  • A multibody system dynamics analysis program is presented using one of the most useful programming methodologies, the object-oriented modeling, The object-oriented modeling defines a problem from the physical world as an abstract object. The object becomes encapsulated with the data and method, Analysis is performed using the object's interface, It is then possible for the user and the developer to modify and upgrade the program without having particular knowledge of the analysis program, The method presented in this paper has several advantages, Since the mechanical components of the multi-body system are converted into the class, the modification, exchange, distribution and reuse of classes are increased. It becomes easier to employ a new analysis method and interface with other S/W and H/W systems, Information can be communicated to each object through messaging. This makes the modeling of new classes easier using the inheritance, When developing a S/W for the computer simulation of a physical system, it is reasonable to use object-oriented modeling.

Dynamics Modeling and Simulation of Korean Communication, Ocean, and Meteorology Satellite

  • No, Tae-Soo;Lee, Sang-Uk;Kim, Sung-Ju
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권2호
    • /
    • pp.89-97
    • /
    • 2007
  • COMS(Communication, Oceanography, and Meteorology Satellite) is the first Korean multi-purpose satellite which is planned to be deployed at the altitude of geosynchronous orbit above the Korean peninsular. Noting that COMS is composed of the main BUS structure, two deployable solar panels, one yoke, five reactions wheels, COMS is treated as a collection of 9 bodies and its nonlinear equations of motion are obtained using the multi-body dynamics approach. Also, a computer program is developed to analyze the COMS motion during the various mission phase. Quite often, the equations of motion have to be derived repeatedly to reflect the fact that the spacecraft dynamics change as its configuration, and therefore its degree of freedom varies. However, the equations of motion and simulation software presented in this paper are general enough to represent the COMS dynamics of various configurations with a minimum change in input files. There is no need to derive the equations of motion repeatedly. To show the capability of the simulation program, the spacecraft motion during the solar array partial and full deployment has been simulated and the results are summarized in this paper.

비선형 크립이론을 이용한 한국형 고속전철의 동특성 해석 (Analysis of Dynamic Behaviors for the Korea High Speed Train(KHST) by Using Non-Linear Creep Theory)

  • 박찬경;김석원;김회선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.1093-1098
    • /
    • 2002
  • Dynamic behaviors of the Korean High-speed Train(KHST) have been analyzed to investigate the performance on the stability, the safety and the ride comfort. Multi-body dynamics analysis program using Recursive method, called RecurDyn, have been employed in the numerical simulation. To model the wheel-rail contact, the RecurDyn uses its built-in module which uses the square root creep law. The accuracy of the rail module in RecurDyn. however, decreases in the analysis of flange contact because it linearizes the shape of the wheel and rail. To solve this problem, a nonlinear contact theory have been developed that considers the profiles of the wheel and rail. The results show that the KHST still needs more stability. The problem should be solved by the examinations of module and modeling.

  • PDF

현가장치 기구정역학 시험에 의한 차량동역학 모델링 및 시험검증 (Vehicle Dynamics Modeling and Correlation Using the Kinematic and Compliance Test of the Suspension)

  • 김상섭;정홍규
    • 한국자동차공학회논문집
    • /
    • 제13권1호
    • /
    • pp.109-118
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of field test results and simulation results of the ADAMS/Car demonstrates the validity of the proposed functional suspension modeling method. This model is suitable for real-time vehicle dynamics analysis.

동역학 S/W와 연계한 회전체 제어의 모델링에 관한 연구 (A study on the Modeling for Rotors Control with Dynamics Analysis S/W)

  • 이원창;김성원;김재실;최헌오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.906-909
    • /
    • 2005
  • This study provides the method to build the rotor system model using dynamic analysis software. also, it introduces the traditional methods of the rotor system modeling and informs the each merits and demerits. We will make up the flexible system of rotor system model with ADAMS, multi-body dynamics S/W, in order to develop dynamics model and get the response of plant model near to real model through connection the SIMULINK of MATLAB. We will develop the computing dynamics-controling model possible controlled simulation similar to a real model with controlling the plant model.

  • PDF

쿨롱 마찰계수들의 통계적 특성을 고려한 지면과 갤러핑을 하는 4 족 로봇간 접촉 모델링 (Contact Modeling between the Ground and the Galloping Quadruped Robot Considering Statistical Characteristics of Coulomb Friction Coefficients)

  • 권성훈;박종현;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.826-830
    • /
    • 2007
  • The effects of the statistical properties of the Coulomb friction coefficients on the dynamic responses of a galloping quadruped robot are investigated in this paper. In general, the Coulomb friction coefficients are assumed to be deterministic for a controller design to achieve required motion characteristics. However, the friction coefficients between the ground and the robot legs are not constant in reality. Therefore, statistical characteristics of the friction coefficients need to be considered for a multi-body modeling of the robot galloping on the ground. The effects of the statistical properties on the dynamic responses of the quadruped robots are investigated.

  • PDF