• 제목/요약/키워드: Multi-body Dynamic Model

검색결과 172건 처리시간 0.035초

상용차량의 비선형 Hotchkiss 스프링 모델링 (Modeling of Non-linear Leaf Spring for Commercial Vehicle)

  • 유승환;김영배
    • 한국CDE학회논문집
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2002
  • A Hotchkiss spring has been widely utilized for commercial vehicle. Usually, the Hotchkiss spring has non-linear characteristics, i.e. it has a piecewise spring stiffness as well as hysterisis phenomenon. Therefore, the modeling of the Hotchkiss spring requires many considerations to fulfill satisfactory vehicle kinematic and dynamic relationships. Also, the spring has difficulties in modeling for presenting contact mechanism. In this paper, the modeling technique for the Hotchkiss spring has been descried. The modeling covers non-linear characteristics as well as contact problems for multi-body dynamic simulation. The force-displacement results are compared with experimental and FEM ones. Also, the comparison between three link type leaf spring model and proposed one has been considered in this paper.

전개형 복합재료 반사판 안테나의 동특성 분석 및 시험 (Analysis and Experiment on Dynamic Characteristics for Deployable Composite Reflector Antenna)

  • 채승호;노진호;이수용;정화영;이재은;박성우
    • 항공우주시스템공학회지
    • /
    • 제13권5호
    • /
    • pp.94-101
    • /
    • 2019
  • 복합재료 반사판 안테나의 전개 특성을 해석 모델을 통하여 살펴보고 실험을 통하여 검증하고자 한다. 두 개의 회전 자유도를 가지며 스프링의 탄성 에너지에 의해 작동되는, 전개 메커니즘을 기반으로 반사판 안테나의 동역학적 해석 모델을 수립하였다. 유연 다물체 동역학 해석 프로그램인 ADAMS를 이용하여 패널의 전개 속도, 구조 변형 그리고 충격력을 분석하였다. 중력보상 장치를 이용하여 탄소섬유 강화 플라스틱(CFRP)으로 제작된 안테나 패널의 전개거동 특성을 실험적으로 검증/분석하였다. 안테나 패널이 전개되는 동안 발생하는 충격 응답 및 진동 문제를 확인하고, 댐퍼를 이용하여 안정적으로 전개가 됨을 확인하였다.

Vibration simulation of a multi-story high-speed railway station

  • Gao, Mangmang;Xiong, Jianzhen;Xu, Zhaojun
    • Interaction and multiscale mechanics
    • /
    • 제3권4호
    • /
    • pp.365-372
    • /
    • 2010
  • Station is an important building in high-speed railway, and its vibration and noise may significantly affect the comfort of waiting passengers. A coupling vibration model for train-structure system is established to analyze and evaluate the vibration level of a typical waiting hall under dynamic train load. The motion of a four-axle vehicle with two suspension system is modeled in multi-body dynamics with linear springs and dampers employed. The station is modeled as a whole finite element structure which is 113 m in longitudinal and 163.5 m in lateral, and the stiffness of the station foundation is considered. According to the assumptions that both wheel and rail are rigid bodies and keep contact to each other in vertical direction, and the wheel/rail interaction and displacement coordination in horizontal direction is defined by the simplified Kalker creep theory, the vehicle spatial vibration model has 27 degrees-of-freedom. An overall analysis procedure is made of the train moving through the station, by which the dynamic responses of the train and the station are calculated. According to the comparison between analysis and test results, the actual connection status between different parts of the station is estimated and the vibration level of the waiting hall is evaluated.

브레이크 저더에 대한 전달계 민감도 해석 (Sensitivity Analysis of Transfer Mechanism to Brake Judder)

  • 심경석;박태원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.401-406
    • /
    • 2011
  • The abnormal vibration from the BTV(Brake Torque Variation) and DTV(Disc Thickness Variation) is transferred to the suspension and steering system during braking. In this paper, judder simulation is carried out using multi-body dynamic analysis program to analyze the relation of the judder and transfer mechanism which is composed of the suspension and steering system. In order to analyze the brake judder transfer system, the full vehicle model was composed with rigid body, non-linear bushing, non-linear constraints and joints. Full vehicle model analysis was compared by actual vehicle judder test and sensitivity analysis of the suspension system is carried out.

  • PDF

항공기 세로 동특성 해석을 위한 시뮬레이터 설계 (The Simulator Design for the Analysis of Aircraft Longitudinal Dynamic Characteristics)

  • 윤선주
    • 한국컴퓨터산업학회논문지
    • /
    • 제7권4호
    • /
    • pp.427-436
    • /
    • 2006
  • 운동하는 물체의 동특성 해석을 위한 상태 공간 모델 방식이 컴퓨터에 의한 미분방정식 해석의 수학적인 도구로서 도입되었다. 시스템 표현이 간단한 행렬 연산 형태로 이루어지므로 선형 및 비선형, 시변 및 시불변 시스템과 단변수 및 다변수 시스템 등에 대하여 통일된 방식의 모델이 사용가능하다. 그리고 이러한 상태 공간 모델을 해석하기위해서는 복잡한 벡터 연산을 하여야 하지만 패킷 소프트웨어의 특정함수를 사용하여 쉽게 해석할 수가 있다. 그러나 최근에는 상용 프로그램의 발전에 따라 동특성 해석을 위한 상태 공간 모델을 대화형 도형 처리를 하여 매우 간단하게 동특성을 시뮬레이션 할 수 있는 방법이 제공되고 있다. 본 논문은 운동하는 물체의 동특성 해석을 하는 데 교육용으로 활용할 수 있는 시뮬레이터를 개발하는 목적으로 항공기의 세로 동특성 해석을 위한 시뮬레이션을 수행하고자 하였으며 항공기 세로 안정성에 대한 과도응답 특성을 해석하는 시뮬레이터를 설계하였다.

  • PDF

산업용 단선 궤도 차량의 주행 동특성에 관한 연구 (A Study on Dynamic Characteristic Analysis for the Industrial Monorail Vehicle)

  • 이수호;정일호;이형;박중경;박태원
    • 대한기계학회논문집A
    • /
    • 제29권7호
    • /
    • pp.1005-1012
    • /
    • 2005
  • An OHT(Over Head Transportation) vehicle is an example of the industrial monorail vehicle, and it is used in the automobile, semiconductor, LCD manufacturing industries. OHT vehicle is moved by main wheels and guide rollers. The major function of the main wheel is to support and drive the OHT vehicle. The roles of the guide roller is the inhibition of derailment and steering of the OHT vehicle. Since the required vehicle velocity becomes faster and the required load capacity is increased, the durability characteristics of the wheel and roller, which was made of urethane, need to be increased. So it is necessary to estimate the fatigue life cycle of the wheel and roller. In this study, OHT dynamic model was developed by using the multi body dynamic analysis program ADAMS. Wheel and roller are modeled by the 3-D surface contact module. Especially, motor cycle tire mechanics is used in the wheel contact model. The OHT dynamic model can analyze the dynamic characteristic of the OHT vehicle with various driving conditions. And the result was verified by a vehicle traveling test. As a result of this study, the developed model is expected to predict wheel dynamic load time history and makes a contribution to design of a new monorail vehicle.

Development of a Real-time Vehicle Driving Simulator

  • Kim, Hyun-Ju;Park, Min-Kyu;Lee, Min-Cheoul;You, Wan-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.51.2-51
    • /
    • 2001
  • A vehicle driving simulator is a virtual reality device which makes a human being feel as if the one drives a vehicle actually. The driving simulator is effectively used for studying interaction of a driver-vehicle and developing the vehicle system of new concepts. The driving simulator consists of a motion platform, a motion controller, a visual and audio system, a vehicle dynamic analysis system, a vehicle operation system and etc. The vehicle dynamic analysis system supervises overall operation of the simulator and also simulates dynamic motion of a multi-body vehicle model in real-time. In this paper, the main procedures to develop the driving simulator are classified by 4 parts. First, a vehicle motion platform and a motion controller, which generates realistic motion using a six degree of freedom Stewart platform driven hydraulically. Secondly, a visual system generates high fidelity visual scenes which are displayed on a screen ...

  • PDF

Development of a Washout Algorithm Using the Signal Compression Method

  • Kang, Eu-Gene;You, Ki-Sung;Lee, Min-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.101.1-101
    • /
    • 2002
  • Vehicle driving simulator is a virtual reality device which makes a human being feel as if the one drives a vehicle actually. Unlike actual vehicle, the simulator has limited kinematic workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model fully. In order to overcome these problems, washout algorithm which restricts workspace of the simulator within the kinematic limits is needed, and analysis of dynamic characteristics is required also. However, it is difficult to select the proper cutoff frequency of filters in washout algorithm. This paper introduces the signal compression method as an effective method to analyze the sim...

  • PDF

동역학 S/W와 연계한 회전체 제어의 모델링에 관한 연구 (A study on the Modeling for Rotors Control with Dynamics Analysis S/W)

  • 이원창;김성원;김재실;최헌오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.906-909
    • /
    • 2005
  • This study provides the method to build the rotor system model using dynamic analysis software. also, it introduces the traditional methods of the rotor system modeling and informs the each merits and demerits. We will make up the flexible system of rotor system model with ADAMS, multi-body dynamics S/W, in order to develop dynamics model and get the response of plant model near to real model through connection the SIMULINK of MATLAB. We will develop the computing dynamics-controling model possible controlled simulation similar to a real model with controlling the plant model.

  • PDF

Moving reactor model for the MULTID components of the system thermal-hydraulic analysis code MARS-KS

  • Hyungjoo Seo;Moon Hee Choi;Sang Wook Park;Geon Woo Kim;Hyoung Kyu Cho;Bub Dong Chung
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4373-4391
    • /
    • 2022
  • Marine reactor systems experience platform movement, and therefore, the system thermal-hydraulic analysis code needs to reflect the motion effect on the fluid to evaluate reactor safety. A moving reactor model for MARS-KS was developed to simulate the hydrodynamic phenomena in the reactor under motion conditions; however, its applicability does not cover the MULTID component used in multidimensional flow analyses. In this study, a moving reactor model is implemented for the MULTID component to address the importance of multidimensional flow effects under dynamic motion. The concept of the volume connection is generalized to facilitate the handling of the junction of MULTID. Further, the accuracy in calculating the pressure head between volumes is enhanced to precisely evaluate the additional body force. Finally, the Coriolis force is modeled in the momentum equations in an acceleration form. The improvements are verified with conceptual problems; the modified model shows good agreement with the analytical solutions and the computational fluid dynamic (CFD) simulation results. Moreover, a simplified gravity-driven injection is simulated, and the model is validated against a ship flooding experiment. Throughout the verifications and validations, the model showed that the modification was well implemented to determine the capability of multidimensional flow analysis under ocean conditions.