• Title/Summary/Keyword: Multi-body

Search Result 1,351, Processing Time 0.03 seconds

ATTITUDE AND CONFIGURATION CONTROL OF FLEXIBLE MULTI-BODY SPACECRAFT

  • Choi, Sung-Ki;Jone, E.;Cochran, Jr.
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.2
    • /
    • pp.107-122
    • /
    • 2002
  • Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems ad-dressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.

Highly-Sensitive Gate/Body-Tied MOSFET-Type Photodetector Using Multi-Finger Structure

  • Jang, Juneyoung;Choi, Pyung;Kim, Hyeon-June;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.151-155
    • /
    • 2022
  • In this paper, we present a highly-sensitive gate/body-tied (GBT) metal-oxide semiconductor field-effect transistor (MOSFET)-type photodetector using multi-finger structure whose photocurrent increases in proportion to the number of fingers. The drain current that flows through a MOSFET using multi-finger structure is proportional to the number of fingers. This study intends to confirm that the photocurrent of a GBT MOSFET-type photodetector that uses the proposed multi-finger structure is larger than the photocurrent per unit area of the existing GBT MOSFET-type photodetectors. Analysis and measurement of a GBT MOSFET-type photodetector that utilizes a multi-finger structure confirmed that photocurrent increases in ratio to the number of fingers. In addition, the characteristics of the photocurrent in relation to the optical power were measured. In order to determine the influence of the incident the wavelength of light, the photocurrent was recorded as the incident the wavelength of light varied over a range of 405 to 980 nm. A highly-sensitive GBT MOSFET-type photodetector with multi-finger structure was designed and fabricated by using the Taiwan semiconductor manufacturing company (TSMC) complementary metal-oxide-semiconductor (CMOS) 0.18 um 1-poly 6-metal process and its characteristics have been measured.

A Study on the exposure dose for the computed tomography (컴퓨터 단층촬영시 환자피폭선량에 관한 연구)

  • Kim, Moon-Chan;Lim, Jong-Suck;Park, Hyung-Ro;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.27 no.2
    • /
    • pp.21-27
    • /
    • 2004
  • This study was conducted to estimate absorbed radiation doses associated with CT examinations. We compared CT dose index between single detector CT and multi detector CT. To establish radiation dose criteria in CT examination in Korea, we measured radiation dose for CT examinations in Seoul and kyungki-do. The results obtained were as follows ; 1. Averaged CTDIW value per 100 mAs was $13.5{\pm}3.2\;mGy$, and ranged from 8.1 mGy to 19.1 mGy in head phantom, was $7.1{\pm}2.0\;mGy$, and ranged from 3.7 mGy to 10.9 mGy in body phantom. 2. CTDIW was 3.2 mGy(1.26 times) larger in multi detector CT than single detector CT in head phantom, and 2.1 mGy(1.34 times) larger in body phantom. 3. The dose was the highest in 4 channel multi detector CT, and followed 8 channel multi detector CT, 16 channel multi detector CT and single detector CT in head phantom. And the dose was the highest in 4 channel and 8 channel multi detector CT, and followed 16 channel multi detector CT and single detector CT in body phantom.

  • PDF

A Flexible Multi-body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

  • Moon Il-Dong;Yoon Ho-Sang;Oh Chae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1638-1645
    • /
    • 2006
  • This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of $1{\sim}2mm/sec$ and frequency of 132 mm. First, the simulation is conducted with the same condition as the test. Then, the simulations are conducted with various amplitudes in a loaded state. The hysteretic diagram from the test is compared with the ones from the simulation for the validation of the reliability of the model. The dynamic stress analysis of the taper leaf spring is also conducted with the developed flexible multi-body dynamic model under a dynamic loading condition.

Fast Processing System for Motion Control of Multi-body Robots (다관절 로봇용 고속 제어보드 개발 및 제어)

  • Sim, Jae-Ik;Kwon, O-Hung;kim, Tae-Sung;Park, Jong-Hyeon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.951-956
    • /
    • 2007
  • This paper suggests a high-speed control method which is suitable for multi-joint robots using a real-time stand-alone controller for general-purpose. The fast processing controller consists of a PCI Interface Board and 2-axe PWM drivers. The PCI Interface Board consists of 32-channel PWM output ports, 32-channel Encoder Counters, 32-channel A/D Converters and 48-channel Digital I/O ports, and all the I/O data transmissions are completed within 1ms. And The 2-axe PWM driver can be redesigned easily in order to embed in each link. Experimental implementations show that the high-speed control method can be used for the real-time control which is essential to controlling of multi-body robots such as humanoid robots. Especially, it is efficient for realizing the model-based motion control in demand of much calculation time by the high I/O communication speed.

  • PDF

A novel 3D BE formulation for general multi-zone domains under body force loading

  • Ghiasian, Mohammad;Ahmadi, Mohammad Taghi
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.775-789
    • /
    • 2013
  • The current paper proposes a boundary element formulation, applicable to 2-D and 3-D elastostatics problems using a unified approach for transformations of the domain integrals into boundary integrals. The method is applicable to linear problems encompassing both finite and infinite multi-region domains allowing non-vanishing body forces. Numerical results agree quite well with the analytical solutions; while the present method offers easy formulation with less numerical efforts in comparison to FEM or some BEM which need interior points to treat arbitrary body forces. It is demonstrated that the method has the potential to have profound impact on engineering design, notably in dam-foundation interaction.

Dynamics Analysis of a Multi-beam System Undergoing Overall Rigid Body Motion Employing Finite Element Method (유한요소법을 사용한 강체운동을 하는 다중보계의 동적 해석)

  • Choe, Sin;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2266-2273
    • /
    • 2000
  • Equations of motion of a multi-beam system undergoing overall rigid body motion are derived by employing finite element method. An orientation angle is employed to allow the arbitrary orientation o f the beam element. Modal coordinate reduction technique, which has been successfully utilized in the conventional linear modeling method, is employed for the present modeling method to reduce the computational effort. Different from the conventional linear modeling method, the present modeling method captures the motion-induced stiffness variations which are important for the dynamic analysis of structures undergoing overall rigid body motion. The numerical results are compared to those of a commercial program to verify the reliability of the present method.

Pareto Optimal Design of the Vehicle Body (차체의 팔렛토 최적 설계)

  • Kim, Byoung-Gon;Chung, Tae-Jin;Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2008
  • The important dynamic specifications in the aluminum automobile body design are the vibrations and crashworthiness in the views of ride comforts and safety. Thus, considerable effort has been invested into improving the performance of mechanical structures comprised of the interactive multiple sub-structures. Most mechanical structures are complex and are essentially multi-criteria optimization problems with objective functions retained as constraints. Each weight factor can be defined according to the effects and priorities among objective functions, and a feasible Pareto-optimal solution exists for the criteria-defined constraints. In this paper, a multi-criteria design based on the Pareto-optimal sensitivity is applied to the vibration qualities and crushing characteristics of front structure in the automobile body design. The vibration qualities include the idle, wheel unbalance and road shake. The crushing characteristic of front structure is the axial maximum peak load.

Coupled Flexible Multi-Body Dynamics and Controller Analysis of Machine Tool (공작기계의 유연 다물체 동역학 및 제어기 연계해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Park, Kang-Kyun;Choi, Hyun-Chul
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.307-312
    • /
    • 2010
  • In this study, advanced computational technique for mechatronic analysis has been developed for the efficient design and test of typical machine tool models. Flexible multi-body dynamic (FMBD) analysis method combined with motion controller including control logics is used to simulate typical operation conditions. The present FMBD machine tool model is composed of flexible column structure, rigid body spindle, vertical motion guide (arm) and screw elements. Driving motor clement with rotating degree-of-freedom is interconnected and governed by the designed Matlab Simulink control logic, and then the position of the spindle is feedback into the control logic. It is practically shown from the results that the investigation of designed machine tools with controller can be effectively conducted and verified.

Car Ride Safety and Comfort Analysis considering Low-frequency Vibration of Car Body

  • Kang, Sang-Wook
    • International Journal of Safety
    • /
    • v.6 no.1
    • /
    • pp.7-10
    • /
    • 2007
  • In this paper, we found that modification of the local flexibility (or local stiffness) of the 4 parts on which shock absorbers are mounted in the vehicle body has some influence the level of ride safety and comfort. Multi-body dynamic analysis considering the flexibility of the vehicle body is performed using MSC/ADAMS and MSC/NASTRAN. More concretely speaking, natural frequencies and mode shapes computed by MSC/NASTRAN are used as input data for multi-body dynamic analysis in MSC/ADAMS. It is confirmed that the ride comfort can be improved by appropriately changing the local stiffness of the vehicle body through several simulations using MSC/ADAMS.