• Title/Summary/Keyword: Multi-band frequency

Search Result 503, Processing Time 0.034 seconds

Design of Wide-Band 6-Port Network for Noise Parameter Measurement Using 3-Section Wilkinson Power Divider and Slot-Coupled Directional Coupler (3단 윌킨슨 전력분배기와 Slot-Coupled 방향성 결합기를 활용한 잡음 파라미터 측정용 광대역 6-포트 회로망의 설계)

  • Lee, Dong-Hyun;Lee, Chang-Dae;Lee, Chan-Woo;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.85-96
    • /
    • 2017
  • In this paper, a 2~18 GHz wideband 6-port network is designed and fabricated to extend the measurement frequency bandwidth of noise parameter measurement method using 6-port network. In order to design a broadband 6-port network, a wilkinson power divider and a directional coupler with wideband characteristics are designed. The wilkinson power divider is designed as a three-section structure to achieve wideband characteristics. The direction coupler is designed as a three-section structure and slot-coupled structure using multi-layer substrate to obtain wideband characteristics. A wideband 6-port network is designed and fabricated combining the designed power divider and coupler. The measured results of the fabricated 6-port network for the 2~18 GHz band show characteristics applicable to the noise parameter measurement method.

Feasibility Study of EEG-based Real-time Brain Activation Monitoring System (뇌파 기반 실시간 뇌활동 모니터링 시스템의 타당성 조사)

  • Chae, Hui-Je;Im, Chang-Hwan;Lee, Seung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.258-264
    • /
    • 2007
  • Spatiotemporal changes of brain rhythmic activity at a certain frequency have been usually monitored in real time using scalp potential maps of multi-channel electroencephalography(EEG) or magnetic field maps of magnetoencephalography(MEG). In the present study, we investigate if it is possible to implement a real-time brain activity monitoring system which can monitor spatiotemporal changes of cortical rhythmic activity on a subject's cortical surface, neither on a sensor plane nor on a standard brain model, with a high temporal resolution. In the suggested system, a frequency domain inverse operator is preliminarily constructed, considering the individual subject's anatomical information, noise level, and sensor configurations. Spectral current power at each cortical vertex is then calculated for the Fourier transforms of successive sections of continuous data, when a single frequency or particular frequency band is given. An offline study which perfectly simulated the suggested system demonstrates that cortical rhythmic source changes can be monitored at the cortical level with a maximal delay time of about 200 ms, when 18 channel EEG data are analyzed under Pentium4 3.4GHz environment. Two sets of artifact-free, eye closed, resting EEG data acquired from a dementia patient and a normal male subject were used to show the feasibility of the suggested system. Factors influencing the computational delay are investigated and possible applications of the system are discussed as well.

An Analysis of Propagation Model in Half-Canyon Structure with Slope using Multi-Ray Model (경사면을 갖는 반-협곡 구조에서 다중-광선 모델을 사용한 전파 모델 해석)

  • Lee, Hwa-Choon;Choi, Tae-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.173-178
    • /
    • 2020
  • A multi-ray model has been used to interpret radio transmission losses in half-canyon structures with slope and to formulate a multi-ray propagation model depending on the angle of slopes. The cut-off angles for the third and fourth paths, which are the slope-sided reflection paths of the transmission and reception radio waves determined by the inclined angles of the slope, were calculated with the height and location of the transmitter and receiver. To predict transmission losses in an inclined plane environment, the embankment environment where the actual slope exists was modeled and simulated to calculate the loss of propagation transmission, and the radio wave transmission loss was confirmed by the measurement for the frequency band 1 to 6 GHz. Simulation results and measurement results showed similar trends in radio transmission loss, and radio transmission loss predictions and measurement results for various terrain information can be used in the design of radio propagation service.

Design and Fabrication of a Wide Band and Multi-Resonation Planar Antenna (광대역 다중공진 평판 안테나 설계 및 구현)

  • Lee, Hyeon-Jin;Park, Seong-Il;Lim, Yeong-Seog
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.171-176
    • /
    • 2005
  • This study designed and fabricated a multi-purpose planar antenna for base stations that are accessible to DCS, WiBro, and ISM. The proposed antenna was designed into an open loop form from the existing monopole structure. The capacitance of the multi-purpose antenna was increased by the coupling of open parts. This makes the use of MMIC and LTCC convenient and the antenna is smaller and has a larger gain than existing antennas. The resonance distance and bandwidth can be adjusted by changing the open gap and the height of the loop of the antenna. The bandwidth of the designed antenna satisfies DCS, IMT-2000, WiBro, Bluetooth, wireless LAN and ISM bands based on VSWR 2. The entire frequency bandwidth is $58.75\%$ of $1.575GHz\~2.985GHz(1.41GHz)$. Also, the radiation pattern of the antenna displayed co-polarization and cross-polarization characteristics at 1.6GHz, 2.3GHz and 2.8GHz.

A MB-OFDM UWB Receive Design and Evaluation Using 4. Parallel Synchronization Architecture (4 병렬 동기 구조를 이용한 MB-OFDM UWB 수신기 설계 및 평가)

  • Shin Cheol-Ho;Choi Sangsung;Lee Hanho;Pack Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.11 s.102
    • /
    • pp.1075-1085
    • /
    • 2005
  • The purpose of this paper is to design the architecture for synchronization of MB-OFDM UWB system that is being processed the standardization for Alt-PHY of WPAN(Wireless Personal Area Network) at IEEE802.15.3a and to analyze the implementation loss due to 4 parallel synchronization architecture for design or link margin. First an overview of the MB-OFDM UWB system based on IEEE802.15.3a Alt-PHY standard is described. The effects of non-ideal transmission conditions of the MB-OFDM UWB system including carrier frequency offset and sampling clock offset are analyzed to design a full digital architecture for synchronization. The synchronization architecture using 4-parallel structure is then proposed to consider the VLSI implementation including algorithms for carrier frequency offset and sampling clock offset to minimize the effects of synchronization errors. The overall performance degradation due to the proposed synchronization architecture is simulated to be with maximum 3.08 dB of the ideal receiver in maximum carrier frequency offset and sampling clock offset tolerance fir MB-OFDM UWB system.

Design of piezoelectric micro-machined ultrasonic transducer for wideband ultasonic radiation in air (공기 중 광대역 초음파 방사용 압전 박막 기반 초소형 초음파 트랜스듀서의 설계)

  • Ahn, Hongmin;Jin, JaeHyeok;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.87-97
    • /
    • 2020
  • In this paper, the design of piezoelectric Micro-machined Ultrasonic Transducer (pMUT) for wideband ultrasonic radiation in air was investigated. One of the methods to achieve wide frequency bandwidth in single device is modeling the transducer to multi-resonance system. The new pMUT was designed as a multi-resonance system with the addition of a suitable acoustic structure to the front and back of a thin film structure. A new pMUT consisting of thin film parts, radiation parts, and packaging parts is designed with a Lumped Parameter Model (L.P.M). Finally, it was validated as a Finite Element Method (FEM) simulation. The final designed pMUT achieved a frequency band of 102 kHz ~ 132 kHz (-3 dB).

Performance Comparison of UWB DS-CDMA/OFDM/MC-CDMA System in S-V Channel Environment (S-V채널 환경에서 UWB DS-CDMA/OFDM/MC-CDMA 시스템 성능 비교)

  • Lee Hyung-Ki;Kwak Kyung-Sup
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.53-60
    • /
    • 2005
  • In this paper, we analyze the performance of UWB MC-CDMA system and compareit with DS-CDMA and OFDM systems, which have been drafting in standardization even now. Too many Rake Fingers are needed in the DS-CDMA system to separate multi-path signals, which results in highsystem complexity. OFDM radio power fails to qualify for FCC certification unless frequency hopping. From this reason, MC-CDMA system considered is proposed in this paper. It has lower complexity compared with DS-CDMA and shows good performance against frequency selective fading. In addition, for a wide-band communication, less radio power per spectrum is allowed in the MC-CDMA system than in an OFDM system. Simulation result show that the DS-CDMA system has better performance with single user, but MC-CDMA system shows best performance in case of multi user environment.

Optimization of Resource Allocation for Inter-Channel Load Balancing with Frequency Reuse in ASO-TDMA-Based VHF-Band Multi-Hop Data Communication System (ASO-TDMA기반 다중-홉 VHF 대역 데이터 통신 시스템의 주파수 재사용을 고려한 채널간 부하 균형을 위한 자원 할당 최적화)

  • Cho, Kumin;Lee, Junman;Yun, Changho;Lim, Yong-Kon;Kang, Chung G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1457-1467
    • /
    • 2015
  • Depending on the type of Tx-Rx pairs, VHF Data Exchange System (VDES) for maritime communication is expected to employ the different frequency channels. Load imbalance between the different channels turns out to be a critical problem for the multi-hop communication using Ad-hoc Self-Organizing TDMA (ASO-TDMA) MAC protocol, which has been proposed to provide the connectivity between land station and remote ship stations. In order to handle the inter-channel load imbalance problem, we consider a model of the stochastic geomety in this paper. After analyzing the spatial reuse efficiency in each hop region by the given model, we show that the resource utility can be maximized by balancing the inter-channel traffic load with optimal resource allocation in each hop region.

Power and Rate Adaptations in Multi-carrier DS/CDMA Communications over Rayleigh Fading Channel (레일레이 패이딩 채널에서 다중 반송자 DS/CDMA 통신 시스템의 전력-전송율 적응 방식)

  • Ah Heejune;Lee Ye Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.423-433
    • /
    • 2005
  • We present power(in frequency domain) and rate adaptation(in time domain) schemes in multicarrier (MC) direct-sequence code-division multiple-access(DS/CDMA) communications. Utilizing channel state information from the receiver, the adaptation schemes allocate power the user's sub-band with the largest channel gain. In the time domain, the transmission data rate is adapted for a desired transmission quality. In the case of single-user channels, a closed-form expression is derived for an optimal time domain power adaptation that minimizes the average bit error rate(BER). Channel inversion power adaptation is found to provide nearly optimal performance in this case, as the number of sub-bands or available average transmission power increase. Analysis and simulation results show the BER performance of the proposed power and rate adaptations with fixed average transmission power significantly improves the performance over the power allocation in the frequency domain only. Also, we compare the performance of the proposed power and rate adaptation schemes in MC-DS/CDMA systems with that of power and rate adapted single carrier DS/CDMA systems with RAKE receiver.

On the System Modeling and Capacity Scaling Law in Underwater Ad Hoc Networks (수중 애드 혹 네트워크에서의 시스템 모델링 및 용량 스케일링 법칙에 대하여)

  • Shin, Won-Yong;Kim, A-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.422-428
    • /
    • 2011
  • In this paper, we introduce system and channel modeling for an underwater ad hoc acoustic network with n regularly located nodes, and then analyze capacity scaling laws based on the model. A narrow-band model is assumed where the carrier frequency is allowed to scale as a function of n. In the network, we characterize in attenuation parameter that depends on the frequency scaling as well as the transmission distance. A cut-set upper bound on the throughput scaling is then derived in extended networks having unit node density. Our result indicates that the upper bound is inversely proportional to the attenuation parameter, thus resulting in a power-limited network. Furthermore, we describe an achievable scheme based on the simple nearest-neighbor multi-hop (MH) transmission. It is shown under extended networks that the MH scheme is order-optimal for all the operating regimes expressed as functions of the attenuation parameter.