• Title/Summary/Keyword: Multi-band frequency

Search Result 501, Processing Time 0.031 seconds

Development of Ceramic Filter Using Non Radiative Microstrip Line In Millimeter-Wave (비방사 마이크로 스트립 선로를 이용한 밀리미터 대역의 세라믹 필터 개발)

  • Shin, Cheon-Woo;Kim, Tae-Heon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.648-656
    • /
    • 2007
  • This paper is about band pass filter, using Ceramics in the condition of center frequency 370Hz at milli-wave. The band pass filter is applied to Broadband Convergence Network, representing WLL(Wireless Local Loop) and LMDS(Local Multi-point Distribution Service). Sticking ceramic between strip line on a dielectric material substrate with which conductor's covers upper and basal surface, One will house the exterior by using structural resonance. In this Non Radiative Microstrip Line Filter structure, based upon simulations, generalized the two formulas finding resonant frequency of 1step ceramic resonator and bandwidth of 4step ceramic resonator. Also, As a result of experiment, using Network Analyzer, about created a experiment of structure based on the simulation result of 4-step ceramic resonator, It showed good characteristic of targeted bandwidth, comparing simulated result of 36.58GHz$\sim$37.650GHz with experimented result of 36.6GHz$\sim$37.65GHz.

Design of Ultra Wide Band Radar Transceiver for Foliage Penetration (수풀투과를 위한 초 광대역 레이더의 송수신기 설계)

  • Park, Gyu-Churl;Sun, Sun-Gu;Cho, Byung-Lae;Lee, Jung-Soo;Ha, Jong-Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • This study is to design the transmitter and receiver of short range UWB(Ultra Wide Band) imaging radar that is able to display high resolution radar image for front area of a UGV(Unmanned Ground Vehicle). This radar can help a UGV to navigate autonomously as it detects and avoids obstacles through foliage. The transmitter needs two transmitters to improve the azimuth resolution. Multi-channel receivers are required to synthesize radar image. Transmitter consists of high power amplifier, channel selection switch, and waveform generator. Receiver is composed of sixteen channel receivers, receiver channel converter, and frequency down converter, Before manufacturing it, the proposed architecture of transceiver is proved by modeling and simulation using several parameters. Then, it was manufactured by using industrial RF(Radio Frequency) components and all other measured parameters in the specification were satisfied as well.

Phase Controlled Thin Film Loop Antenna for Multi-media Devices (멀티미디어단말기용 박막형 위상제어루프 안테나)

  • Shin, Cheon-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.7
    • /
    • pp.971-978
    • /
    • 2009
  • The paper is a phase controlled loop antenna for multi-media devices. We developed a phase control loop pattern arrangement methods for loop antenna in mobile devices like as a cell phone and PCS, WCDMA. In the loop antenna pattern, arrange close adhesive the loop antenna pattern $180^\circ$ cycle in wave length, the radiated electro-magnetic wave from close adhesive loop pattern become to coherent wave than the phase controlled loop antenna has high efficiency and high radiation gain. To acquire a wide band width on phase controlled loop antenna, we arrange a multiple phase controlled loop pattern that has a different length each other. Different length for each other loop pattern cause a different frequency that we can acquire a wide band width for loop antenna from close adhesive phase control. In experiment, we designed a CDMA850 mobile multi-media antenna in 20mm$\times$20mm area thickness 0.4mm, the radiation efficiency is over 60% and radiation gain is over 0dBi.

  • PDF

An Adaptive Narrowband Interference Excision Filter with Low Signal Loss for GPS Receivers

  • Shin, Mi-Young;Park, Chan-Sik;Lee, Ho-Keun;Lee, Dae-Yearl;Lee, Sang-Jeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1234-1238
    • /
    • 2005
  • As the low power GPS signal is susceptible to interference, interference can seriously degrade the performance of GPS receiver. This paper designs a ANIEF(Adaptive Narrowband Interference Excision in Frequency domain) filter that removes narrow band interferences with low signal loss. This filter uses the pre-correlation technique and attempts to filter out the interference in the frequency domain. The interference excision performance of the designed filter is evaluated for various interferences using the ANIEF filter inserted GPS software receiver and the interference generator. Interferences considered in this paper are single-tone CWI(Continuous Wave Interference), multi-tones CWI, pulsed CWI, and swept CWI. The narrowband interference excision filter in frequency domain is very effective against various interferences and the strong interference with a simple structure. However, the signal power loss is unavoidable while transforming. In this paper, the hamming window and overlap technique are adopted to reduce the signal power loss. Finally, the interference excision performance and the reduced signal power loss of the ANIEF filter are shown.

  • PDF

Implementation of Multi-channel Communication System for Drone Swarms Control (군집 드론의 동시제어를 위한 멀티채널 송신 시스템 구현)

  • Lee, Seong-Ho;Han, Kyong-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.179-185
    • /
    • 2017
  • Communication technologies hold a significant place in the swarm flight of drones for surveillance, inspection of disasters and calamities, entertainment performances, and drone collaborations. A GCS(ground control station) for the control of drone swarms needs its devoted communication method to control a large number of drones at the same time. General drone controllers control drones by connecting transmitters and drones in 1:1. When such an old communication method is employed to control many drones simultaneously, problems can emerge with the control of many transmitter modules connected to a GCS and frequency interference among them. This study implemented a transmitter controller to control many drones simultaneously with a communication chip of 2.4GHz ISM band and a Cortex M4-based board. It also designed a GCS to control many transmitter controllers via a network. The hierarchical method made it possible to control many more drones. In addition, the problem with frequency interference was resolved by implementing a time- and frequency-sharing method, controlling many drones simultaneously, and adding the frequency hopping feature. If PPM and S.BUS protocol features are added to it, it will be compatible with more diverse transmitters and drones.

Optimization of a Broadband Waveguide Magic-T for X-Band Monopulse Tracking Radars (X-Band 모노펄스 추적 레이더를 위한 광대역 도파관 Magic-T 최적화 설계)

  • Hwang, Keum-Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1042-1049
    • /
    • 2009
  • Design and optimization of a broadband waveguide magic-T was performed for X-Band tracking radars. A multi-stepped conducting cylinder was used to enhance the bandwidth performance of the conventional waveguide magic-Ts. Particles swarm optimization in conjunction with genetic algorithm was employed to obtain the optimized geometrical parameters. The optimized design exhibits low reflection coefficient below -20 dB at all waveguide ports with frequency bandwidth of 12%. The transmission loss and difference are within 0.2 dB and 0.1 dB, respectively. Measured results are also shown to be in good agreement with the simulated results. Finally, the bandwidth performances for five and seven-stepped conducting cylinders are also investigated.

Design of a MIMO Antenna Using a RF MEMS Element (RF MEMS 소자를 이용한 MIMO 안테나 설계)

  • Lee, Won-Woo;Rhee, Byung-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1113-1119
    • /
    • 2013
  • In this letter, a new approach is proposed for the design of a multi antenna for MIMO wireless devices. The proposed antenna covers various LTE(Long Term Evolution) service bands: band 17(704~746 MHz), band 13(746~787 MHz), band 5(824~894 MHz), and band 8(880~960 MHz). The proposed main antenna consists of a conventional monopole antenna with an inverted L-shaped slit for wideband operation. The proposed the LTE sub antenna is based on a switch loaded loop antenna structure, with a resonance frequency that can be controlled by capacitance of a logic circuit. The tuning technique for the LTE Rx antenna uses a RF MEMS(Micro-Electro mechanical system) to match the impedances to realize the bands of interest. Because the two proposed antennas are polarized orthogonally to each other, the ECC(Envelope Correlation Coefficient) characteristic between two antennas was measured to be very low (below 0.06) with an isolation characteristic below -20 dB between the two antennas in the operating overall LTE bands. The proposed antenna is particularly attractive for mobile devices that integrate LTE multiple systems.

System Performance Analysis for Multi-Band SweepSAR Operating Mode (다중대역 SweepSAR 운용 모드의 시스템 성능 분석)

  • Yoon, Seong-Sik;Lee, Jae-Wook;Lee, Taek-kyung;Ryu, Sang-Burm;Lee, Hyeon-Cheol;Kang, Eun-Su;Lee, Sang-Gyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.186-194
    • /
    • 2017
  • In this paper, we analyze the main performance of satellite's Synthetic Aperture Radar system for high resolution and wide swath. We have used the radiation pattern of reflector antenna with array feed and comparison between the conventional ScanSAR mode and SweepSAR mode has been carried out. The SweepSAR mode is a high-resolution wide-swath mode that transmits beams over a wide range and receives echo signals through sequential beamforming based on SCORE(SCan On REceive). In this paper, we analyzed the operating principle and characteristics of satellite's SweepSAR mode and simulate system performances. In addition, in order to increase the utilization of image, performances analysis for multiple frequency bands(C-band, X-band) has been considered.

Stacked LTCC Band-Pass Filter for IEEE 802.11a (IEEE 802.11a용 적층형 LTCC 대역통과 여파기)

  • Lee Yun-Bok;Kim Ho-Yong;Lee Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.154-160
    • /
    • 2005
  • Microwave Otters are essential device in modem wireless systems. A compact dimension BPF(Band-pass Filter) for IEEE 802.11a WLAN service is realized using LTCC multi-layer process. To extrude 2-stage band-pass equivalent circuit, band-pass and J-inverter transform applied to Chebyshev low-pass prototype filter. Because parallel L-C resonator is complicate and hard to control the inductor characteristics in high frequency, the shorted $\lambda/4$ stripline is selected for the resonator structure. The passive element is located in the different layers connected by conventional via structure and isolated by inner GND. The dimension of fabricated stacked band-pass filter which is composed of six layers, is $2.51\times2.27\times1.02\;mm^3$. The measured filter characteristics show the insertion loss of -2.25 dB, half-power bandwidth of 220 MHz, attenuation at 5.7 GHz of -32.25 dB and group delay of 0.9 ns at 5.25 GHz.

An OFDMA-Based Next-Generation Wireless Downlink System Design with Hybrid Multiple Access and Frequency Grouping Techniques

  • Lee Won-Ick;Lee Byeong Gi;Lee Kwang Bok;Bahk Saewoong
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.115-125
    • /
    • 2005
  • This paper discusses how to effectively design a next-generation wireless communication system that can possibly provide very high data-rate transmissions and versatile quality services. In order to accommodate the sophisticated user requirements and diversified user environments of the next-generation systems, it should be designed to take an efficient and flexible structure for multiple access and resource allocation. In addition, the design should be optimized for cost-effective usage of resources and for efficient operation in a multi-cell environment. As orthogonal frequency division multiple access (OFDMA) has turned out in recent researches to be one of the most promising multiple access techniques that can possibly meet all those requirements through efficient radio spectrum utilization, we take OFDMA as the basic framework in the next-generation wireless communications system design. So, in this paper, we focus on introducing an OFDMA-based downlink system design that employs the techniques of hybrid multiple access (HMA) and frequency group (FG) in conjunction with intra-frequency group averaging (IFGA). The HMA technique combines various multiple access schemes on the basis of OFDMA system, adopting the multiple access scheme that best fits to the given user condition in terms of mobility, service, and environment. The FG concept and IFGA technique help to reduce the feedback overhead of OFDMA system and the other-cell interference (OCI) problem by grouping the sub-carriers based on coherence band-widths and by harmonizing the channel condition and OCI of the grouped sub-carriers.