• Title/Summary/Keyword: Multi-ball

Search Result 153, Processing Time 0.031 seconds

Comparison of the tribological behaviors of various organic molecular films (다양한 유기분자막의 마찰특성 비교)

  • ;;;V. Tsukruk
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.49-54
    • /
    • 2001
  • Monolayers such as self-assembled monolayer (SAM) have received considerable attention to reduce stiction and friction in micro-devices and microelectromechanical systems (MEMS). Various organic molecular films were investigated to obtain better understanding of their tribological behaviors and adhesion property. The organic molecular films studied in this work are: epoxysilane SAMs, octadecyltricholosilane (OST), multi-layers composed of epoxysilane SAMs, poly〔styrene-b-(ethylene-co-butylene)-b-styrene〕(SEBS) and compound of epoxy resin and poly (paraphenylene) (EP/PPP). The pull-off forces of these films were also obtained from force-distance curves measured in static mode of operation of atomic force microscope (AFM). Tribological tests were conducted with a ball-on-flat reciprocating friction tester. The OST showed the lowest pull-off force, indicating its low adhesion property. It was revealed that, the OST, EP/PPP and the multi-layer of epoxysilane SAMs, SEBS and EP/PPP exhibited good tribological properties at the lower load (0.3 N) whereas the OST showed best performance at the higher load (1.8 N).

  • PDF

CSP + HDI : MCM!

  • Bauer, Charles-E.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.35-40
    • /
    • 2000
  • MCM technology languished troughout most of the 1990's due to high costs resulting from low yields and issues with known god die. During the last five years of the decade new developments in chip scale packages and high density, build up multi-layer printed wiring boards created new opportunities to design and produce ultra miniaturized modules using conventional surface mount manufacturing capabilities. Focus on the miniaturization of substrate based packages such as ball grid arrays (BGAs) resulted in chip scale packages (CSPs) offering many of the benefits of flip chip along with the handling, testing, manufacturing and reliability capabilities of packaged deviced. New developments in the PWB industry sought to reduce the size, weight, thickness and cost of high density interconnect (HDI) substrates. Shrinking geometries of vias and new constructions significantly increased the interconnect density available for MCM-L applications. This paper describes the most promising CSP and HDI technologies for portable products, high performance computing and dense multi-chip modules.

  • PDF

Low Temperature Sintering of PNN-PZT Ceramics and Its Electrical Properties (PNN-PZT 세라믹스의 저온 소결 및 전기적 특성 평가)

  • Lee, Myung-Woo;Kim, Sung-Jin;Yoon, Man-Soon;Ryu, Sung-Lim;Kweon, Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1077-1082
    • /
    • 2008
  • To fabricate a multi-layered piezoelectrics/electrodes structure, the piezoelectrics should be sintered at the temperature lower than $950^{\circ}C$ to use the silver electrode, which is cheaper than the electrodes containing noble metals such as Pd and Pt. Therefore, in this study, we modified the composition of $Pb(Zr,Ti)O_3$-based material as $(Pb_{0.98}Cd_{0.02})(Ni_{1/3}Nb_{2/3})_{0.25}Zr_{0.35}Ti_{0.4}O_3$ to lower the sintering temperature and to improve the piezoelectric properties. Small amount of $MnCO_3$, $SiO_2$, and $Pb_3O_4$ were also added to lower the sintering temperature of the ceramic. The prepared raw powders were mixed by using a ball mill for 24 hours. And then the mixed powders were calcinated for 2 hours at $800^{\circ}C$. The calcinated powders were again crushed with the ball mill for 72 hours. The final powders were pressed for making the shape of ${\emptyset}15\;mm$ disk. The disk-type samples were sintered at temperature range of $850{\sim}950^{\circ}C$. The crystal phases of the sintered specimens were perovskite structure without secondary phases. All of the measured electrical properties such as electromechanical coupling coefficients ($k_p$), mechanical quality factors ($Q_m$), and piezoelectric charge constants ($d_{33}$) were decreased with decreasing the sintering temperatures. The electrical properties measured at the sample sintered at $950^{\circ}C$ were 54% of $k_p$, 503 of $Q_m$, and 390 pC/N of $d_{33}$, respectively. These properties were considered to be fairly good for the application of multi-layered piezoelectric generators or actuators.

Development of Multi-functional Centerless Grinding System with 600 mm Wide Grinding Wheels (600 mm 급 다기능 광폭 센터리스 연삭시스템 개발)

  • Oh, Jung Soo;Cho, Chang Rae;Tsukishima, Hidehiro;Cho, Soon Joo;Park, Chung Hong;Oh, Jeong Seok;Whang, In Bum;Lee, Won Jae;Kim, Seok Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1129-1137
    • /
    • 2013
  • We report a centerless grinding machine which can perform multi-function with 600 mm wide grinding wheels. By increasing manufacturing area, long workpiece such as camshaft and steering shaft, is allowed to grind more quickly, compared with cylindrical grinding system. In this paper, the design of centerless grinding machine puts emphasis on symmetry to exploit the thermal stability. Results of finite element analysis shows that the difference of the structural deflection in the front and rear guideways is less than $1.5{\mu}m$ due to symmetric design. The difference is less than $3.0{\mu}m$, even though the thermal deformation is considered. According to the performance evaluation, the radial error motion of the G/W spindle, which is measured by applying Donaldson Ball Reversal, is about 1.1${\mu}m$. The yaw error of the G/W slide is improved from 2.1 arcsec to 0.5 arcsec by readjusting the slide preload and ball screw.

Study on the Grinding Characteristic of MWCNT and Al2O3 Composite by Using Planetary Ball Mill (유성 볼밀을 사용한 MWCNT와 Al2O3의 혼합 분쇄 특성에 관한 연구)

  • Seo, Chang-Myung;Kim, Yeong-Geun;Ji, Myoung-Kuk;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.91-96
    • /
    • 2013
  • The present paper focuses on the fabrication of materials with higher thermal conductivity. Nanofluid is a novel transfer prepared by dispersing nanometer-sized solid particles in traditional heat transfer fluid to increase thermal conductivity and heat transfer performance. The purpose of this study is making the nano-size particle. The experiment of MWCNT and $Al_2O_3$ was carried out using a planetary ball mill at several rotation speeds: 200 ~ 400 rpm. The results were examined using scanning electron microscope(SEM). In the case of the MWCNT, it could be more grinding into the small particle in the dry condition and it confirm in the case of the $Al_2O_3$ to be more grinding into the small particle contrary to the MWCNT in the wet condition. In the mixture grinding result of MWCNT and $Al_2O_3$, the dry condition showed the good result in low rotation speed than the wet condition.

Development of Tennis Training Machine in Ourdoor Environment with Human Tracking (사용자 추적 기능을 가진 야외용 테니스 훈련용 장치 개발)

  • Yang, Jeong-Yean
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.424-431
    • /
    • 2020
  • This paper focused on the development of sports robot that detects a human player and shots a serve ball automatically. When robot technologies apply to the sports machine, the domain problems occurs such as outdoor environments and playing condition to recognize the visual and the vocal modalities. Gaussian mixture model and Kalman filter are used to detect the player's position in the left, right, and depth direction and to avoid the noises caused by the player's posture variation around the net. The sports robot is designed by the pan-tilt structure to shot a serve ball by pneumatic control under the multi layered software architecture. Finally, the proposed tracking and the machine performance are discussed by experimental results.

Effect of Powder Morphology on the Deposition Quality for Direct Laser Melting (Direct Laser Melting 공정시 분말 형태가 적층 품질에 미치는 영향)

  • Lee, S.H.;Kil, T.D.;Han, S.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.195-202
    • /
    • 2016
  • Direct laser melting(DLM) is an additive manufacturing process that can produce parts by solidification of molten metallic powder layer by layer. The properties of the fabricated parts strongly depend on characteristics of the metallic powder. Atomized powders having spherical morphology have commonly been used for DLM. Mechanical ball-milling is a powder processing technique that can provide non-spherical solid powders without melting. The aim of the current study was to investigate the effect of powder morphologies on the deposition quality in DLM. To characterize the morphological effect, the performances of spherical and non-spherical powders were compared using both single- and multi-track DLM experiments. DLM experiments were performed with various laser process parameters such as laser power and scan rate, and the deposition quality was evaluated. The surface roughness, cross-section bead shape and process defects such as balling or non-filled area were compared and discussed in this study.

MECHANICAL PROPERTIES OF REUSED LITHIUM DISILICATE GLASS-CERAMIC OF IPS EMPRESS 2 SYSTEM

  • Oh Sang-Chun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.6
    • /
    • pp.572-576
    • /
    • 2002
  • This investigation was designed to estimate the biaxial flexure strength and fracture toughness of lithium disilicate glass-ceramics of IPS Empress 2 system pressed with as-received ingots and their sprue buttons. Two groups of the lithium disilicate glass-ceramics were prepared as follows: group 1 is ingot-pressed group; group 2 is sprue button-pressed group. A ball-on-three-ball test was used to determine biaxial flexure strength (BFS) of disks in wet environment. Scanning electron microscopy(SEM) analysis was conducted to observe the microstructure of the ceramics. Unpaired t-test showed that there were no differences in the mean biaxial Hem strength (BFS) and KIC values between group 1 and 2 (p > 0.05). Two groups showed similar values in the KIC and the strength at 5% failure probability. The SEM micrographs of the IPS Empress 2 glass-ceramic showed a closely packed, multi-directionally interlocking pattern of numerous lithium disilicate crystals protruding from the glass matrix. The lithium orthophosphate crystals could not be observed on the fracture surface etched. There was no a marked difference of the microstructure between group 1 and 2. Although there were no tests including color stability, casting accuracy, etc., the results of this study implied that we could reuse the sprue button of the pressed lithium disilicate glass-ceramic of IPS Empress 2 system.

Optimal Structures of a Neural Network Based on OpenCV for a Golf Ball Recognition (골프공 인식을 위한 OpenCV 기반 신경망 최적화 구조)

  • Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.267-274
    • /
    • 2015
  • In this paper the optimal structure of a neural network based on OpenCV for a golf ball recognition and the intensity of ROI(Region Of Interest) are calculated. The system is composed of preprocess, image processing and machine learning, and a learning model is obtained by multi-layer perceptron using the inputs of 7 Hu's invariant moments, box ration extracted by vertical and horizontal length or ${\pi}$ calculated by area of ROI. Simulation results show that optimal numbers of hidden layer and the node of neuron are selected to 2 and 9 respectively considering the recognition rate and running time, and optimal intensity of ROI is selected to 200.

Design of a Hybrid Serial-Parallel Robot for Multi-Tasking Machining Processes (ICCAS 2005)

  • Kyung, Jin-Ho;Han, Hyung-Suk;Ha, Young-Ho;Chung, Gwang-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.621-625
    • /
    • 2005
  • This paper presents a new hybrid serial-parallel robot(HSPR), which has six degrees of freedom driven by ball screw linear actuators and motored joints. This hybrid robot design presents a compromise between high rigidity of fully parallel manipulators and extended workspace of serial manipulators. The hybrid robot has a large, singularity-free workspace and high stiffness. Therefore, the presented kinematic structure of the hybrid robot is particularly suitable for multi-tasking machining processes such as milling, drilling, deburring and grinding. In addition to the machining processes, the hybrid robot can be used for welding, fixturing, material handling and so on. The study on design of the hybrid robot is performed. A kinematic analysis and mechanism description of the hybrid robot with six-controlled degree of freedom is presented. In the virtual design works by DADS, workspace and force analysis are discussed. A numerical model is treated to demonstrate our analysis and to determine the range of permissible extension of the struts. Also, we determine some important design parameters for the hybrid robot.

  • PDF