• Title/Summary/Keyword: Multi-axial load

검색결과 85건 처리시간 0.029초

Effect of unequal spans on the collapse behavior of multi-story frames with reduced beam section connections

  • Zheng Tan;Wei-hui Zhong;Bao Meng;Li-min Tian;Yao Gao;Yu-hui Zheng;Hong-Chen Wang
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.107-122
    • /
    • 2024
  • Following an internal column failure, adjacent double-span beams above the failed column will play a critical role in the load transfer and internal force redistribution within the remaining structure, and the span-to-depth ratios of double-span beams significantly influence the structural resistance capacity against progressive collapse. Most existing studies have focused on the collapse-resistant performances of single-story symmetric structures, whereas limited published works are available on the collapse resistances of multi-story steel frames with unequal spans. To this end, in this study, numerical models based on shell elements were employed to investigate the structural behavior of multi-story steel frames with unequal spans. The simulation models were validated using the previous experimental results obtained for single- and two-story steel frames, and the load-displacement responses and internal force development of unequal-span three-story steel frames under three cases were comprehensively analyzed. In addition, the specific contributions of the different mechanism resistances of unequal-span, double-span beams of each story were separated quantitatively using the energy equilibrium theory, with an aim to gain a deeper level of understanding of the load-resistance mechanisms in the unequal-span steel frames. The results showed that the axial and flexural mechanism resistances were determined by the span ratio and linear stiffness ratio of double-span beams, respectively.

철근 콘크리트 전단벽에서 면외 하중이 면내 전단성능에 미치는 영향 (The Effect of Out-of-Plane Load on the In-Plane Shear Capacity of Reinforcement Concrete Shear Wall)

  • 신혜민;박준희
    • 한국지진공학회논문집
    • /
    • 제28권2호
    • /
    • pp.77-83
    • /
    • 2024
  • The design shear strength equations of RC shear walls have been developed based on their performance under in-plane (IP) loads, thereby failing to account for the potential performance degradation of shear strength when subjected to simultaneous out-of-plane (OOP) loading. Most of the previous experimental studies on RC walls have been conducted in one direction under quasi-static conditions, and due to the difficulty in experimental planning, there is a lack of research on cyclic loading and results under multi-axial loading conditions. During an earthquake, shear walls may yield earlier than their design strength or fail unexpectedly when subjected to multi-directional forces, deviating from their intended failure mode. In this paper, nonlinear analysis in finite element models was performed based on the results of cyclic loading experiments on reinforced concrete shear walls of auxiliary buildings. To investigate the reduction trend in IP shear capacity concerning the OOP load ratio, parametric analysis was conducted using the shear wall FEM. The analysis results showed that as the magnitude of the OOP load increased, the IP strength decreased, with a more significant effect observed as the size of the opening increased. Thus, the necessity to incorporate this strength reduction as a factor for the OOP load effect in the wall design strength equation should be discussed by performing various parametric studies.

FATIGUE DAMAGE PARAMETER OF SPOT WELDED JOINTS UNDER PROPORTIONAL LOADING

  • KANG H. T.
    • International Journal of Automotive Technology
    • /
    • 제6권3호
    • /
    • pp.285-291
    • /
    • 2005
  • In this paper, the author proposes a fatigue damage parameter of spot welded joints under proportional loading. The proposed fatigue damage parameter is developed based on von Mises' equivalent stress and local structural stress at the edge of spot weld nugget. The structural stress at the edges of the weld nugget in each sheet is calculated using the forces and moments that are determined by finite element analysis. A structural equivalent stress is then calculated by von Mises' equivalent stress equation. The structural equivalent stresses are correlated to experimental fatigue life of the spot welded joints. The proposed parameter is evaluated with fatigue test data of spot welds subjected to multi axial and tensile-shear loads. Sheppard's parameter and Rupp and co-workers' parameter are also evaluated with the same test data to compare with the author's parameter. This proposed parameter presents a better correlation with experimental fatigue data than those of Sheppard's and Rupp and co-workers' parameter. The proposed parameter should be very effective for durability calculations during the early design phase since coarsely meshed finite element models can be employed.

굽힘하중을 받는 배관의 파손에 미치는 감육의 영향 (Effect of Wall Thinning on the Failure of Pipes Subjected to Bending Load)

  • 안석환;남기우
    • 대한기계학회논문집A
    • /
    • 제29권4호
    • /
    • pp.606-613
    • /
    • 2005
  • Effects of circumferentially local wall thinning on the fracture behavior of pipes were investigated by monotonic four-point bending. Local wall thinning was machined on the pipes in order to simulate erosion/corrosion metal loss. The configurations of the eroded area included an eroded ratio of d/t= 0.2, 0.5, 0.6, and 0.8, and an eroded length of ${\ell}\;=10mm,$ 25mm, and 120mm. Fracture type could be classified into ovalization, local buckling, and crack initiation depending on the eroded length and eroded ratio. Three-dimensional elasto-plastic analyses were also carried out using the finite element method, which is able to accurately simulate fracture behaviors excepting failure due to cracking. It was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area.

Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity

  • Chemi, Awda;Heireche, Houari;Zidour, Mohamed;Rakrak, Kaddour;Bousahla, Abdelmoumen Anis
    • Advances in nano research
    • /
    • 제3권4호
    • /
    • pp.193-206
    • /
    • 2015
  • The present paper investigate the elastic buckling of chiral double-walled carbon nanotubes (DWCNTs) under axial compression. Using the non-local elasticity theory, Timoshenko beam model has been implemented. According to the governing equations of non-local theory, the analytical solution is derived and the solution for non-local critical buckling loads is obtained. The numerical results show the influence of non-local small-scale coefficient, the vibrational mode number, the chirality of carbon nanotube and aspect ratio of the (DWCNTs) on non-local critical buckling loads of the (DWCNTs). The results indicate the dependence of non-local critical buckling loads on the chirality of single-walled carbon nanotube with increase the non-local small-scale coefficient, the vibrational mode number and aspect ratio of length to diameter.

정지궤도복합위성 추진계 배관망 구조해석 (Stress Analysis of the GEO-KOMPSAT-2 Tubing System)

  • 정규;임재혁;채종원;전형열
    • 항공우주시스템공학회지
    • /
    • 제12권1호
    • /
    • pp.47-56
    • /
    • 2018
  • 본 논문에서는 정지궤도복합위성 추진계 배관망의 독자적인 구조해석을 실시하였고, AIRBUS의 구조해석결과와 비교분석을 통해 추진계 배관망의 구조적 건전성 및 해석방법의 신뢰성을 평가하였다. 추진계 배관망의 구조적 신뢰성 확보는 정지궤도복합위성 추진계의 매우 중요한 핵심요소이다. 따라서 CAE 프로그램을 통해 직접 추진계 배관망 모델링을 수행하였고, 발사환경에서 구조해석을 실시하여 응력을 도출하였다. 내압응력해석, 조립정렬해석, 정현파진동해석, 랜덤진동해석의 하중조건에 따라 Hoop stress, Axial stress, Bending stress, Torsion stress를 구하였고, 이를 모두 고려한 von Mises 응력 계산 후 안전여유 결과 값을 도출함으로써 추진계 배관망의 구조적 건전성을 판단하였다.

궤도 하부구조설계를 위한 간이 설계 모노그래프 개념 개발 (Development of A Simple Design Monograph for Track Sublayers)

  • 박미연;이진욱;이성혁;박재학;임유진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.428-435
    • /
    • 2011
  • In general, thickness of the sublayers under track is designed based on concept of vertical soil reaction value or vertical stiffness. However, this design method cannot take consideration into soil-track interaction under repetitive load, traffic condition and velocity of the train. Furthermore, the reinforced roadbed soils experience complex behavior that cannot be explained by conventional stress-strain relation expressed as soil reaction value k. The reinforced roadbed soils also can produce cumulative permanent deformation under repetitive load caused by train. Therefore new design method for the sublayers under track must be developed that can consider both elastic modulus and permanent deformation. In this study, a new design concept, a rule-of-thumb, is proposed as the form of design monograph that is developed using elastic multi-layer and finite element programs by analyzing stress and deformation in the sublayers with changing the thickness and elastic modulus of the sublayers and also using data obtained from repetitive triaxial test. This new design concept can be applied to design of the reinforced roadbed before developing full version of design methodology that can consider MGT, axial load and the material properties of the layers. The new design monograph allows the user to design the thickness of the reinforced roadbed based on permanent deformation, elastic modulus and MGT.

  • PDF

축력이 재하된 원형 콘크리트 충전강관 기둥의 최대 저항능력 (Ultimate Resisting Capacity of Axially Loaded Circular Concrete-Filled Steel Tube Columns)

  • 곽효경;곽지현
    • 콘크리트학회논문집
    • /
    • 제24권4호
    • /
    • pp.423-433
    • /
    • 2012
  • 콘크리트 충전 강관 기둥은 축하중 재하시 콘크리트에 구속응력이 발생함에 따라 콘크리트의 강도가 증가한다. 콘크리트의 강도 증가분은 발생된 구속응력의 크기에 종속되므로 비선형 해석을 통하여 원형 콘크리트 충전 강관의 축방향 하중에 대한 최대 저항능력을 산정하였다. 콘크리트의 포아송비 및 응력-변형률 관계와 같은 비선형 재료 특성을 고려하였으며, 강관의 다축 항복조건을 기준으로 최대 구속응력을 산정하였다. 실험 결과와의 비교를 통하여 제안된 모델을 검증하였으며, 회귀분석을 통하여 D/t 비율 및 재료성질에 따른 최대 구속응력 산정법을 단순화하였다. Eurocode 4 설계 기준 및 기존에 제안된 다양한 경험식과의 비교를 통하여 제안된 회귀분석식의 타당성을 검증하였다.

부분 인장형 사장교 주형의 복합 구조 (Hybrid Deck System for Partially Earth Anchored Cable Stayed Bridges)

  • 조재영;노정휘;김정중
    • 복합신소재구조학회 논문집
    • /
    • 제4권4호
    • /
    • pp.30-36
    • /
    • 2013
  • Partially earth anchored (PEA) can improve the structural safety and economic feasibility of multiple span cable stayed bridge (CSB). The PEA-CSB can restrain axial compressive load acting on a tower and reduce the global buckling length of a stiffened girder. For these reasons, structural members subject to axial forces can be effectively utilized and material quantity required for a steel deck can be reduced to save construction cost. In this study, the PEA system was verified for its application on a multiple span CSB. The CSB is a four-tower multi-span bridge which has a main span length of 500 m. As high tensile stress was generated at the top of the bridge decks at the mid-span between two main columns, a hybrid deck system for enhancing the bridge deck sections was proposed. While the composite sections made of concrete and steel were used near to the main columns, steel sections were used at the mid-span between two main columns.

Material Characteristics of Dental Implant System with In-Vitro Mastication Loading

  • 정태곤;정용훈;이수원;양재웅;정재영;박광민;강관수
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.72-72
    • /
    • 2018
  • A dynamic fatigue characteristic of dental implant system has been evaluated with applying single axial compressive shear loading based on the ISO 14801 standard. For the advanced dynamic fatigue test, multi-directional force and motion needed to be accompanied for more information of mechanical properties as based on mastication in oral environment. In this study, we have prepared loading and motion protocol for the multi-directional fatigue test of dental implant system with single (Apical/Occlusal; AO), and additional mastication motion (Lingual/Facial; LF, Mesial/Distal; MD). As following the prepared protocol (with modification of ISO 14801), fatigue test was conducted to verify the worst case results for the development of highly stabilized dental implant system. Mechanical testing was performed using an universal testing machine (MTS Bionix 858, MN, USA) for static compression and single directional loading fatigue, while the multi-directional loading was performed with joint simulator (ADL-Force 5, MA, USA) under load control. Basically, all mechanical test was performed according to the ISO 14801:2016 standard. Static compression test was performed to identify the maximum fracture force with loading speed of 1.0 mm/min. A dynamic fatigue test was performed with 40 % value of maximum fracture force and 5 Hz loading frequency. A single directional fatigue test was performed with only apical/occlusal (AO) force application, while multi directional fatigue tests were applied $2^{\circ}$ of facial/lingual (FL) or mesial/distal (MD) movement. Fatigue failure cycles were entirely different between applying single-directional loading and multi-directional loading. As a comparison of these loading factor, the failure cycle was around 5 times lower than single-directional loading while applied multi-directional loading. Also, the displacement change with accumulated multi-directional fatigue cycles was higher than that of single directional cycles.

  • PDF