• 제목/요약/키워드: Multi-aspect Model

검색결과 112건 처리시간 0.021초

고지방 식이 섭취 소동물 모델을 활용한 전신진동 자극의 복부 지방 감소 효능 평가 (The Effects of Whole Body Vibration in the Aspect of Reducing Abdominal Adipose Tissue in High-Fat Diet Mice Model)

  • 황동현;김서현;이한아;이상엽;서동현;조승관;천슬기;한태영;김한성
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권1호
    • /
    • pp.49-55
    • /
    • 2017
  • The prevalence of obesity has noticeably increased worldwide over several decades with various complication. Even though anti-obesity drug treatments have been spotlighted by resulting in effective mean weight losses, its adverse effects cannot be overlooked. Thus, this study aimed to evaluate the effects of multi-frequency whole body vibration, one of the mechanical stimulus, as a countermeasure against obesity. Thirty-two-6-week-old C57BL/6J male mice were equally assigned to four groups: the Control group (CON, n = 8), the Sham group (Sham, n = 8), the sham with single frequency whole body vibration (S+V, n = 8), and the sham with multi frequency whole body vibration (S+MV, n = 8). After 4 weeks, morphologic changes in the adipose tissue were evaluated from three-dimensional images using in vivo micro-computed tomography. At 4 weeks, the volume of the abdominal adipose tissue, which had the highest value in Sham group, noticeably reduced in S+MV group compared to it in S+V group. These results implied that the accumulation of abdominal adipose tissue can be effectively reduced through applying multi-frequency whole body vibration.

The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory

  • Alwabli, Afaf S.;Kaci, Abdelhakim;Bellifa, Hichem;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Alzahrani, Dhafer A.;Abulfaraj, Aala A.;Bourada, Fouad;Benrahou, Kouider Halim;Tounsi, Abdeldjebbar;Mahmoud, S.R.;Hussain, Muzamal
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.15-24
    • /
    • 2021
  • Microtubules (MTs) are the main part of the cytoskeleton in living eukaryotic cells. In this article, a mechanical model of MT buckling, considering the modified strain gradient theory, is analytically examined. The MT is assumed as a cylindrical beam and a new single variable trigonometric beam theory is developed in conjunction with a modified strain gradient model. The main benefit of the present formulation is shown in its new kinematic where we found only one unknown as the Euler-Bernoulli beam model, which is even less than the Timoshenko beam model. The governing equations are deduced by considering virtual work principle. The effectiveness of the present method is checked by comparing the obtained results with those reported by other higher shear deformation beam theory involving a higher number of unknowns. It is shown that microstructure-dependent response is more important when material length scale parameters are closer to the outer diameter of MTs. Also, it can be confirmed that influences of shear deformation become more considerable for smaller shear modulus and aspect ratios.

Optimization of particle packing by analytical and computer simulation approaches

  • He, Huan;Stroeven, Piet;Stroeven, Martijn;Sluys, Lambertus Johannes
    • Computers and Concrete
    • /
    • 제9권2호
    • /
    • pp.119-131
    • /
    • 2012
  • Optimum packing of aggregate is an important aspect of mixture design, since porosity may be reduced and strength improved. It may also cause a reduction in paste content and is thus of economic relevance too. Several mathematic packing models have been developed in the literature for optimization of mixture design. However in this study, numerical simulation will be used as the main tool for this purpose. A basic, simple theoretical model is used for approximate assessment of mixture optimization. Calculation and simulation will start from a bimodal mixture that is based on the mono-sized packing experiences. Tri-modal and multi-sized particle packing will then be discussed to find the optimum mixture. This study will demonstrate that computer simulation is a good alternative for mixture design and optimization when appropriate particle shapes are selected. Although primarily focusing on aggregate, optimization of blends of Portland cement and mineral admixtures could basically be approached in a similar way.

회전체 베어링계의 불균형 응답 해석을 위한 개선된 부분 구조 합성법 (An Improved Substructure Synthesis Method for Unbalance Response Analysis of Rotor Bearing Systems)

  • 홍성욱;박종혁
    • 소음진동
    • /
    • 제6권1호
    • /
    • pp.71-82
    • /
    • 1996
  • The finite element analysis for rotor bearing systems has been an essential tool for design, identification, and diagnosis of rotating machinery. Among others, the unbalance response analysis is fundamental in the vibration analysis of rotor bearing systems because rotating unbalance is recognized as a common sourve of vibration in rotating machinery. However there still remains a problem in the aspect of computational efficiency for unbalance response analysis of large rotor bearing systems. Gyroscopic terms and local bearing parameters in rotor bearing systems often make matters worse in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and/or anisotropy. The present paper proposes an efficient method for unbalance responses of multi-span rotor bearing systems. An improved substructure synthesis scheme is introduced which makes it possible to compute unbalance responses of the system by coupling unbalance responses of substructures that are of self adjoint problem with small order matrices. The present paper also suggests a scheme to easily deal with gyroscopic tems and local, coupling or bearing parameters. The proposed method causes no errors even though the computational effort is reduced drastically. The present method is demonstrated through three test examples.

  • PDF

산화티타늄 광촉매 활성의 비일관성 (Inconsistent Activities of Titanium Oxide Photocatalysts)

  • 류정호;최원용
    • 공업화학
    • /
    • 제18권4호
    • /
    • pp.371-375
    • /
    • 2007
  • 본 연구에서는 광촉매 활성의 다면성을 체계적으로 조사하고자 5개의 상업용 $TiO_2$ 시료와 9가지의 대상기질을 선정하여 광촉매 분해반응을 수행하였다. 광촉매 활성은 평가 대상기질에 따라 매우 상이하게 측정되는 등 매우 복잡하게 나타났고, 광촉매의 일반적 특성들과 뚜렷한 상관성을 보이지 않았다. 즉, 이러한 광촉매 반응의 기질 특이성 때문에 단일물질에 대한 활성으로 전체 광촉매 활성을 대표할 수 없고, 여러 광촉매 간의 직접적이고 객관적인 활성비교가 어렵게 된다. 따라서, 표준화된 광촉매 활성 평가법 개발을 위해서는 광촉매 반응의 기질 특이성을 이해하고 각 적용분야에 맞게 평가기준을 달리하는 등의 통합적인 노력이 요구된다

역물류를 고려한 통합물류망에서의 입지:경로문제 (A Location-Routing Problem for Logistics Network Integrating Forward and Reverse Flow)

  • 나호영;이상헌
    • 산업공학
    • /
    • 제22권2호
    • /
    • pp.153-164
    • /
    • 2009
  • An effective management for reverse flows of products such as reuse, repair and disposal, has become an important issue for every aspect of business. In this paper, we study the Location-Routing Problem (LRP) in the multi-stage closed-loop supply chain network. The closed-loop supply chain in this study integrated both forward and reverse flows. In forward flow, a factory, Distribution Center (DC) and retailer are considered as usual. Additionally in reverse flow, we consider the Central Returns collection Center (CRC) and disposal facility. We propose a mixed integer programming model for the design of closed-loop supply chain integrating both forward and reverse flows. Since the LRP belongs to an NP-hard problem, we suggest a heuristic algorithm based on genetic algorithm. For some test problems, we found the optimal locations and routes by changing the numbers of retailers and facility candidates. Furthermore, we compare the efficiencies between open-loop and closed-loop supply chain networks. The results show that the closed-loop design is better than the open one in respect to the total routing distance and cost. This phenomenon enlarges the cut down effect on cost as an experimental space become larger.

Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle

  • Medani, Mohammed;Benahmed, Abdelillah;Zidour, Mohamed;Heireche, Houari;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.595-610
    • /
    • 2019
  • This paper deals with the static and dynamic behavior of Functionally Graded Carbon Nanotubes (FG-CNT)-reinforced porous sandwich (PMPV) polymer plate. The model of nanocomposite plate is investigated within the first order shear deformation theory (FSDT). Two types of porous sandwich plates are supposed (sandwich with face sheets reinforced / homogeneous core and sandwich with homogeneous face sheets / reinforced core). Functionally graded Carbon Nanotubes (FG-CNT) and uniformly Carbon Nanotubes (UD-CNT) distributions of face sheets or core porous plates with uniaxially aligned single-walled carbon nanotubes are considered. The governing equations are derived by using Hamilton's principle. The solution for bending and vibration of such type's porous plates are obtained. The detailed mathematical derivations are provided and the solutions are compared to some cases in the literature. The effect of the several parameters of reinforced sandwich porous plates such as aspect ratios, volume fraction, types of reinforcement, number of modes and thickness of plate on the bending and vibration analyses are studied and discussed. On the question of porosity, this study found that there is a great influence of their variation on the static and vibration of porous sandwich plate.

Effective torsional stiffness of reinforced concrete structural walls

  • Luo, Da;Ning, Chaolie;Li, Bing
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.119-127
    • /
    • 2019
  • When a structural wall is subjected to multi-directional ground motion, torsion-induced cracks degrade the stiffness of the wall. The effect of torsion should not be neglected. As a main lateral load resisting member, reinforced concrete (RC) structural wall has been widely studied under the combined action of bending and shear. Unfortunately, its seismic behavior under a combined action of torsion, bending and shear is rarely studied. In this study, torsional performances of the RC structural walls under the combined action is assessed from a comprehensive parametrical study. Finite element (FE) models are built and calibrated by comparing with the available experimental data. The study is then carried out to find out the critical design parameter affecting the torsional stiffness of RC structural walls, including the axial load ratio, aspect ratio, leg-thickness ratio, eccentricity of lateral force, longitudinal reinforcement ratio and transverse reinforcement ratio. Besides, to facilitate the application in practice, an empirical equation is developed to estimate the torsional stiffness of RC rectangular structural walls conveniently, which is found to agree well with the numerical results of the developed FE models.

Free vibrational behavior of perfect and imperfect multi-directional FG plates and curved structures

  • Pankaj S. Ghatage;P. Edwin Sudhagar;Vishesh R. Kar
    • Geomechanics and Engineering
    • /
    • 제35권4호
    • /
    • pp.367-383
    • /
    • 2023
  • The present paper examines the natural frequency responses of the bi-directional (nx-ny, ny-nz and nz-nx) and multidirectional (nx-ny-nz) functionally graded (FG) plate and curved structures with and without porosity. The even and uneven kind of porosity pattern are considered to observe the influence of porosity type and porosity index. The numerical findings have been obtained using a higher order shear deformation theory (HSDT) based isometric finite element (FE) approach generated in a MATLAB platform. According to the convergence and validation investigation, the proposed HSDT based FE model is adequate to predict free vibrational responses of multidirectional porous FG plates and curved structures. Further a parametric analysis is carried out by taking various design parameters into account. The free vibrational behavior of bidirectional (2D) and multidirectional (3D) perfect-imperfect FGM structure is examined against various power law index, support conditions, aspect, and thickness ratio, and for the curvature of curved structures. The results indicate that the maximum non-dimensional fundamental frequency (NFF) value is observed in perfect FGM plates and curved structures compared to porous FGM plates and curved structures and it is maximum for FGM plates and curved structures with uneven kind of porosity than even porosity.

Insights from LDPM analysis on retaining wall failure

  • Gili Lifshitz Sherzer;Amichai Mitelman;Marina Grigorovitch
    • Computers and Concrete
    • /
    • 제33권5호
    • /
    • pp.545-557
    • /
    • 2024
  • A real-case incident occurred where a 9-meter-high segment of a pre-fabricated concrete separation wall unexpectedly collapsed. This collapse was triggered by improperly depositing excavated soil against the wall's back, a condition for which the wall segments were not designed to withstand lateral earth pressure, leading to a flexural failure. The event's analysis, integrating technical data and observational insights, revealed that internal forces at the time of failure significantly exceeded the wall's capacity per standard design. The Lattice Discrete Particle Model (LDPM) further replicates the collapse mechanism. Our approach involved defining various parameter sets to replicate the concrete's mechanical response, consistent with the tested compressive strength. Subsequent stages included calibrating these parameters across different scales and conducting full-scale simulations. These simulations carried out with various parameter sets, were thoroughly analyzed to identify the most representative failure mechanism. We developed an equation from this analysis that quickly correlates the parameters to the wall's load-carry capacity, aligned with the simulation. Additionally, our study examined the wall's post-peak behavior, extending up to the point of collapse. This aspect of the analysis was essential for preventing failure, providing crucial time for intervention, and potentially averting a disaster. However, the reinforced concrete residual state is far from being fully understood. While it's impractical for engineers to depend on the residual state of structural elements during the design phase, comprehending this state is essential for effective response and mitigation strategies after initial failure occurs.