• Title/Summary/Keyword: Multi-array LED

Search Result 13, Processing Time 0.025 seconds

Fabrication of Anti-Moiré Filter Using Multi-Array Needle Coating for LED Screens (다중 배열 니들 코팅을 이용한 LED 스크린용 Anti-Moiré 필터 제작)

  • Jeon, Kyungjun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.77-82
    • /
    • 2021
  • Using a multi-array needle module developed for coating of high-density cylindrical microlens array (C-MLA), we have fabricated an anti-Moiré filter for LED screens. The Moiré phenomenon appears due to the interference between the array pattern of image sensors in a camera and the non-emission area (grid pattern) of a LED screen. To suppress it, we have employed poly(methyl methacrylate) (PMMA) and coated it on a glass substrate in the form of a grid and non-grid (parallel lines). We have rotated the needle module in order to increase the number of C-MLAs. With this scheme, we have fabricated the 150 mm × 150 mm anti-Moiré filters where 836 microlens lines are formed. They show the average width of 255.4 ㎛, the average distance between CMLs of 94.6 ㎛, and C-MLA width non-uniformity of 4.7%. We have shown that the Moiré patterns still appear in the presence of the parallel (non-grid)-type filter, whereas they disappeared completely by the grid-type filter. It is due to the fact that the Moiré patterns are diffused more effectively by the grid-type C-MLA.

Smart Headlamp Optics Design with Multi-array LEDs (멀티 어레이 엘이디를 이용한 지능형 전조등 광학 설계)

  • Yu, Jin Hee;Ro, Suk Ju;Lee, Jun Ho;Hwang, Chang Kook;Go, Dong Jin
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.5
    • /
    • pp.231-236
    • /
    • 2013
  • We investigated the optical design of a smart headlamp capable of producing various beam patterns through only on/off modulation of light sources. This was implemented by forming a continuous matrix of beams from discontinuous beam patterns by means of a multi-array LED optical system. As one such optical system, the multi-array LED system is a convenient and economical device for implementing beam patterns with the simple on/off modulation of the light sources. A single optical assembly module can be made by combining a multiple-LED array, optical system module, and electronic control with no need for any additional mechanical components. The present optical system was designed to include a secondary lens and a projection lens mounted at the front of each LED in the array to realize accurate lighting patterns as well as the required luminosity at a distance of 25 m in the forward direction. Finally, we identified and analyzed the patterns implemented by the designed optical system that produced satisfactory performance of high beams and adaptive driving beams (ADB).

Rectangular Microlens array for Multi Chip LED Packaing (LED 패키지를 위한 사각 형상의 마이크로 렌즈)

  • Lim C.H.;Jeung W.K.;Choi S.M.;Oh Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.882-884
    • /
    • 2005
  • A new rectangular shape microlens array having high sag for solid-state lighting is presented. Proposed microlens, which has high sag, over $375{\mu}m$ and large diameter, over 3 mm can enormously enhance output optical extraction efficiency. Rectangular shape of microlens can maximize the fill factor of light-emitting-diode (LED) package and minimize the optical loss at the same time. This wafer level microlens array is fabricated on LED package. It has many advantages in optical properties, low cost, high aligning accuracy, and mass production.

  • PDF

Development of Array-Lens for Multi-Color Chip-LED (Multi-Color Chip-LED용 어레이 렌즈 개발에 관한 연구)

  • Choi, Byung-Ky;Lee, Dong-Gil;Jang, Kyeung-Cheun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.50-55
    • /
    • 2007
  • The purpose of this research is to enhance the luminance of the LED and to improve the implementation of color by mounting an array lens on the LED without special technology in process. The workmanship of key components considering the economical efficiency and the injection molding technology for high quality of the product are essential to achieve it. In this paper, the mold was computer-aided was designed and manufactured by CAM software (NX4) and high speed machining center. the applied final machining conditions were 3,000-5,000mm/min feed speed, 15,000-25,000rpm and ${\Phi}0.3mm$ ball end-mill. And the Flow analysis was performed using the mold flow software(MPI) in order to get uniformity of resin. Injection conditions acquired by the flow analysis and the injection experiment are as follows. The cylinder temperature is $220-260^{\circ}C$, the mold temperature is $70-80^{\circ}C$, the injection time is about 1.2sec, the injection pressure and velocity is each 7.8-14.7Mpa, and the injection velocity is 0.8-1.2m/sec.

Optical Design of a Multilayer LED Array Light Source and Illumination Optics for a Large-Screen LC Projection Display System (대화면 액정 화상 투영기용 다층 배열 엘이디 광원 및 조명광학계 설계)

  • Kim, Hyun Hee;Han, Dong Jin;Kim, Jin Seung
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.4
    • /
    • pp.226-232
    • /
    • 2015
  • A double-layer LED array together with an illumination optical system is proposed as a possible light source for LC projection display systems for large screens, up to $8m{\times}6m$ (400 inches diagonal). The heat dissipation problem of the LED array is solved by arranging the LEDs in double layers, and thermal analysis shows its effectiveness. The light from the LEDs in the back layer can be transmitted through the front layer without significant loss by arranging the LEDs in non-overlapping positions in the two layers and inserting suitable microlenses between the two layers and holes in the first layer. Together with the double-layer LEDs, an illumination optical system is designed to illuminate liquid crystal panels with good uniformity and appropriate matching with the projection optics.

A Memory-Efficient Fingerprint Verification Algorithm Using a Multi-Resolution Accumulator Array

  • Pan, Sung-Bum;Gil, Youn-Hee;Moon, Dae-Sung;Chung, Yong-Wha;Park, Chee-Hang
    • ETRI Journal
    • /
    • v.25 no.3
    • /
    • pp.179-186
    • /
    • 2003
  • Using biometrics to verify a person's identity has several advantages over the present practices of personal identification numbers (PINs) and passwords. At the same time, improvements in VLSI technology have recently led to the introduction of smart cards with 32-bit RISC processors. To gain maximum security in verification systems using biometrics, verification as well as storage of the biometric pattern must be done in the smart card. However, because of the limited resources (processing power and memory space) of the smart card, integrating biometrics into it is still an open challenge. In this paper, we propose a fingerprint verification algorithm using a multi-resolution accumulator array that can be executed in restricted environments such as the smart card. We first evaluate both the number of instructions executed and the memory requirement for each step of a typical fingerprint verification algorithm. We then develop a memory-efficient algorithm for the most memory-consuming step (alignment) using a multi-resolution accumulator array. Our experimental results show that the proposed algorithm can reduce the required memory space by a factor of 40 and can be executed in real time in resource-constrained environments without significantly degrading accuracy.

  • PDF

Automotive Adaptive Front Lighting Requiring Only On/Off Modulation of Multi-array LEDs

  • Lee, Jun Ho;Byeon, Jina;Go, Dong Jin;Park, Jong Ryul
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.207-213
    • /
    • 2017
  • The Adaptive Front-lighting System (AFS) is a part of the active safety system, providing optimized vision to the driver during night time and other poor-sight conditions of the road by automatic adaptation of lighting to environmental and traffic conditions. Basically, an AFS provides four different modes of the passing beam as designated in an United Nations Economic Commission for Europe regulation (ECE324-R123): neutral state or country light (Class C), urban light (Class V), highway light (Class E), and adverse weather light (Class W). In this paper, we first present an optics design for an AFS system capable of producing the Class C/V/E/W patterns requiring only on/off modulation of multi-array LEDs with no need for any additional mechanical components. The AFS optics consists of two separated modules, cutoff and spread; the cutoff module lights a narrow central area with high luminous intensity, satisfying the cutoff regulation, and the spread module forms a wide spread beam of low luminous intensity. Each module consists of two major parts; the first converts a discretely positioned LED array into a full-filled area emitting light source plane, and the second projects the light source plane to a 25 m away target plane. With the combination of these two optics modules, the four beam patterns are formed by simple on/off modulation of multi-array LEDs. Then we report the development of a prototype that was demonstrated to provide the four beam patterns.

Development of Thermal Imprint System for Net-Shape Manufacturing of Multi-layer Ceramic Structure (세라믹 정형 가공을 위한 성형기 개발)

  • Park, C.K.;Rhim, S.H.;Hong, J.P.;Lee, J.K.;Yoon, S.M.;Ko, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.401-404
    • /
    • 2008
  • In the present investigation, a high precision thermal imprint system for micro ceramic products was developed and the net-shape manufacturing of multi-layer ceramic reflector for LED (Light Emitting Diode) was conducted with a precision metal die. Workpiece used in the present investigation were the multi-layer laminated ceramic sheets with pre-punched holes. The cavity with arbitrary angle was formed on the circular and rectangular holes of the ceramic sheets. During the imprinting process, the ambient temperature of the imprint system was kept over the transition temperature of the ceramic sheet and then rapidly cooled. The results in this paper show that the present method can be successfully applied to the fabrication of very small size hole array for ceramic reflector in a one step operation.

  • PDF

Widely Tunable Grating Cavity Lasers

  • Kwon, Oh-Kee;Sim, Eun-Deok;Kim, Kang-Ho;Kim, Jong-Hoi;Yun, Ho-Gyeong;Kwon, O-Kyun;Oh, Kwang-Ryong
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.545-554
    • /
    • 2006
  • A widely tunable multi-channel grating cavity laser is proposed and experimentally demonstrated. The device is implemented in Littman configuration with an echelle grating based on Rowland circle construction and realized by monolithically integrating all elements in an InP substrate. Lasing wavelength is selected by turning on an amplifier and the appropriate channel element in the array, and it is tuned by controlling light deflection electrically. The 6-channel device exhibits a tuning range of about 50 nm with a side mode suppression ratio of more than 30 dB. This is accomplished by adjusting the applied current of the dispersive element and phase control section.

  • PDF

Multi Spatial Interaction Interface in Large-scale Interactive Display Environment (대규모 인터랙티브 디스플레이 환경에서의 멀티 공간 인터랙션 인터페이스)

  • Yun, Chang-Ok;Park, Jung-Pil;Yun, Tae-Soo;Lee, Dong-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.2
    • /
    • pp.43-53
    • /
    • 2010
  • The interactive display is providing various interaction modes to users through various ubiquitous computing technologies. These methods were studied for their interactions, but the limits that it is provided to only single user and the device usability were generated. In this paper, we propose a new type of spatial multi interaction interface that provide the various spatial touch interactive to multi users in the ambient display environment. Therefore, we generate the interaction surface so that a user can interact through the IR-LEDs Array Bar installed in the ceiling of the ambient display environment. At this time, a user can experience the various interactions through the spatial touch in an interaction surface. Consequently, this system offers the interactive display and interface method that the users can interact through natural hand movement without the portable devices.