• Title/Summary/Keyword: Multi-agent based simulation

Search Result 95, Processing Time 0.03 seconds

Study for Control Algorithm of Robust Multi-Robot in Dynamic Environment (동적인 환경에서 강인한 멀티로봇 제어 알고리즘 연구)

  • 홍성우;안두성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.249-254
    • /
    • 2001
  • Abstract In this paper, we propose a method of cooperative control based on artifical intelligent system in distributed autonomous robotic system. In general, multi-agent behavior algorithm is simple and effective for small number of robots. And multi-robot behavior control is a simple reactive navigation strategy by combining repulsion from obstacles with attraction to a goal. However when the number of robot goes on increasing, this becomes difficult to be realized because multi-robot behavior algorithm provide on multiple constraints and goals in mobile robot navigation problems. As the solution of above problem, we propose an architecture of fuzzy system for each multi-robot speed control and fuzzy-neural network for obstacle avoidance. Here, we propose an architecture of fuzzy system for each multi-robot speed control and fuzzy-neural network for their direction to avoid obstacle. Our focus is on system of cooperative autonomous robots in environment with obstacle. For simulation, we divide experiment into two method. One method is motor schema-based formation control in previous and the other method is proposed by this paper. Simulation results are given in an obstacle environment and in an dynamic environment.

  • PDF

Cooperation with Ground and Arieal Vehicles for Multiple Tasks: Decentralized Task Assignment and Graph Connectivity Control (지상 로봇의 분산형 임무할당과 무인기의 네트워크 연결성 추정 및 제어를 통한 협업)

  • Moon, Sung-Won;Kim, Hyoun-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.218-223
    • /
    • 2012
  • Maintenance and improvement of the graph connectivity is very important for decentralized multi-agent systems. Although the CBBA (Consensus-Based Bundle Algorithm) guarantees suboptimal performance and bounded convergence time, it is only valid for connected graphs. In this study, we apply a decentralized estimation procedure that allows each agent to track the algebraic connectivity of a time-varying graph. Based on this estimation, we design a decentralized gradient controller to maintain the graph connectivity while agents are traveling to perform assigned tasks. Simulation result for fully-actuated first-order agents that move in a 2-D plane are presented.

Implementation of Intelligent Agent Based on Reinforcement Learning Using Unity ML-Agents (유니티 ML-Agents를 이용한 강화 학습 기반의 지능형 에이전트 구현)

  • Young-Ho Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.2
    • /
    • pp.205-211
    • /
    • 2024
  • The purpose of this study is to implement an agent that intelligently performs tracking and movement through reinforcement learning using the Unity and ML-Agents. In this study, we conducted an experiment to compare the learning performance between training one agent in a single learning simulation environment and parallel training of several agents simultaneously in a multi-learning simulation environment. From the experimental results, we could be confirmed that the parallel training method is about 4.9 times faster than the single training method in terms of learning speed, and more stable and effective learning occurs in terms of learning stability.

QLGR: A Q-learning-based Geographic FANET Routing Algorithm Based on Multi-agent Reinforcement Learning

  • Qiu, Xiulin;Xie, Yongsheng;Wang, Yinyin;Ye, Lei;Yang, Yuwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4244-4274
    • /
    • 2021
  • The utilization of UAVs in various fields has led to the development of flying ad hoc network (FANET) technology. In a network environment with highly dynamic topology and frequent link changes, the traditional routing technology of FANET cannot satisfy the new communication demands. Traditional routing algorithm, based on geographic location, can "fall" into a routing hole. In view of this problem, we propose a geolocation routing protocol based on multi-agent reinforcement learning, which decreases the packet loss rate and routing cost of the routing protocol. The protocol views each node as an intelligent agent and evaluates the value of its neighbor nodes through the local information. In the value function, nodes consider information such as link quality, residual energy and queue length, which reduces the possibility of a routing hole. The protocol uses global rewards to enable individual nodes to collaborate in transmitting data. The performance of the protocol is experimentally analyzed for UAVs under extreme conditions such as topology changes and energy constraints. Simulation results show that our proposed QLGR-S protocol has advantages in performance parameters such as throughput, end-to-end delay, and energy consumption compared with the traditional GPSR protocol. QLGR-S provides more reliable connectivity for UAV networking technology, safeguards the communication requirements between UAVs, and further promotes the development of UAV technology.

Multi-Agent Model and Simulation for the Dynamics of Housing Market (주택시장변동 분석을 위한 멀티에이전트 모형의 개발 및 시뮬레이션)

  • Moon, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.3
    • /
    • pp.101-115
    • /
    • 2009
  • The prompt recovery of housing market in Korea became the national task, for which tools that can analyze the influence that changing situation of housing market and new policy may have on the housing market needs to be developed. Thus, this research intends to develop Multi-Agent Housing Market Model and simulation system in Jinju City as a study area. Analyzing the local housing market of Jinju City, then multi-agent model of housing market that consolidates 3 sub-models, house choice model, hedonic model of house price and location choice model is developed. Moreover in order to develop simulation system the model is programmed in the virtual space of which the size is $150{\times}100$ cell including physical shape of city such as road, urban facilities, land use, etc. With the system, simulations are performed to confirm the impact of urban development on the pattern of residential location. As a result, it is found that the residential location can not be easily induced when only road, commercial and convenient facilities are supplied. However, it is also found that since supplying green results in very many residences, arrangement of infrastructure and environmental factor should be considered at the same time for urban development. As conclusion, it is confirmed that the model and simulation system developed in this research smoothly works to be utilized for the analysis of diverse policy experiment and housing market.

  • PDF

Applying Rescorla-Wagner Model to Multi-Agent Web Service and Performance Evaluation for Need Awaring Reminder Service (Rescorla-Wagner 모형을 활용한 다중 에이전트 웹서비스 기반 욕구인지 상기 서비스 구축 및 성능분석)

  • Kwon, Oh-Byung;Choi, Keon-Ho;Choi, Sung-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.3
    • /
    • pp.1-23
    • /
    • 2005
  • Personalized reminder systems have to identify the user's current needs dynamically and proactively based on the user's current context. However, need identification methodologies and their feasible architectures for personalized reminder systems have been so far rare. Hence, this paper aims to propose a proactive need awaring mechanism by applying agent, semantic web technologies and RFID-based context subsystem for a personalized reminder system which is one of the supporting systems for a robust ubiquitous service support environment. RescorlaWagner model is adopted as an underlying need awaring theory. We have created a prototype system called NAMA(Need Aware Multi-Agent)-RFID, to demonstrate the feasibility of the methodology and of the mobile settings framework that we propose in this paper. NAMA considers the context, user profile with preferences, and information about currently available services, to discover the user's current needs and then link the user to a set of services, which are implemented as web services. Moreover, to test if the proposed system works in terms of scalability, a simulation was performed and the results are described.

  • PDF

Multi-agent System based GENCO model for an effective market simulation (전력시장 시뮬레이션을 위한 MAS 기반 GENCO 모델링)

  • Kang, Dong-Joo;Kim, Hak-Man;Chung, Koo-Hyung;Han, Seok-Man;H.Kim, Bal-Ho;Hur, Don
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.127-129
    • /
    • 2007
  • Since the competitive market environment was introduced into the electric power industry, the structure of the industry has been changing from vertically integrated system to functionally unbundled and decentralized system composed of multiple (decision-making) market participants. So the market participants such as Gencos or LSE (load serving entity) need to forecast the market clearing price and thus build their offer or bidding strategies. Not just these market players but also a market operator is required to perform market analysis and ensure simulation capability to manage and monitor the competitive electricity market. For fulfilling the demand for market simulation, many global venders like GE, Henwood, Drayton Analytics, CRA, etc. have developed and provided electricity market simulators. Most of these simulators are based on the optimization formulation which has been used mainly for the least cost resource planning in the centralized power system planning and operation. From this standpoint, it seems somehow inevitable to face many challenges on modeling competitive market based on the method of traditional market simulators. In this paper, we propose a kind of new method, which is MAS based market simulation. The agent based model has already been introduced in EMCAS, one of commercial market simulators, but there may be various ways of modeling agent. This paper, in particular, seeks to introduce an model for MAS based market simulator.

  • PDF

Dynamic Positioning of Robot Soccer Simulation Game Agents using Reinforcement learning

  • Kwon, Ki-Duk;Cho, Soo-Sin;Kim, In-Cheol
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.59-64
    • /
    • 2001
  • The robot soccer simulation game is a dynamic multi-agent environment. In this paper we suggest a new reinforcement learning approach to each agent's dynamic positioning in such dynamic environment. Reinforcement learning is the machine learning in which an agent learns from indirect, delayed reward an optimal policy to chose sequences of actions that produce the greatest cumulative reward. Therefore the reinforcement learning is different from supervised learning in the sense that there is no presentation of input pairs as training examples. Furthermore, model-free reinforcement learning algorithms like Q-learning do not require defining or learning any models of the surrounding environment. Nevertheless it can learn the optimal policy if the agent can visit every state- action pair infinitely. However, the biggest problem of monolithic reinforcement learning is that its straightforward applications do not successfully scale up to more complex environments due to the intractable large space of states. In order to address this problem. we suggest Adaptive Mediation-based Modular Q-Learning (AMMQL)as an improvement of the existing Modular Q-Learning (MQL). While simple modular Q-learning combines the results from each learning module in a fixed way, AMMQL combines them in a more flexible way by assigning different weight to each module according to its contribution to rewards. Therefore in addition to resolving the problem of large state effectively, AMMQL can show higher adaptability to environmental changes than pure MQL. This paper introduces the concept of AMMQL and presents details of its application into dynamic positioning of robot soccer agents.

  • PDF

A Virtual Manufacturing Agent for Sales Agent of Manufacturers in EC Marketplace (전자상거래 환경하에서의 제초업체 판매 에이전트를 위한 가상생산 에이전트)

  • 최형림;박병주;김현수;이창호
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.1-15
    • /
    • 2001
  • Recently, Internet based Electronic Commerce is recognized as one of the alternatives for strengthening sales power of small and medium companies. However, small and medium manufacturers can't adjust properly to the new environment because they are in short of money, personnel, and technology. To cope with this problem, this paper deals with the development of virtual manufacturing agent to support sales agent. The sales activity of most of parts manufacturing companies is based on orders of buyers. The process of promotion, receipt and selection of orders of the parts manufacturing is closely coupled with the load status of the production lines. On deciding whether to accept an order or not, as well as negotiating with buyers, sales person needs information such as load and schedule of production lines, manufacturability of the order. Therefore, the functions of virtual manufacturing agents manufacturability analysis, process planning, and scheduling are key features in developing an agent of sales activity for the parts manufacturing business. While most of research on virtual manufacturing system so far is focused on the simulation of each product, this paper deals with the development of agent assisting internet-based product sales by supporting production information promptly. The pilot system of virtual manufacturing agent is implemented using KQML-based agent template and Java-based expert system shell for a small molding company.

  • PDF

Task Allocation of Intelligent Warehouse Picking System based on Multi-robot Coalition

  • Xue, Fei;Tang, Hengliang;Su, Qinghua;Li, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3566-3582
    • /
    • 2019
  • In intelligent warehouse picking system, the allocation of tasks has an important influence on the efficiency of the whole system because of the large number of robots and orders. The paper proposes a method to solve the task allocation problem that multi-robot task allocation problem is transformed into transportation problem to find a collision-free task allocation scheme and then improve the capability of task processing. The task time window and the power consumption of multi-robot (driving distance) are regarded as the utility function and the maximized utility function is the objective function. Then an integer programming formulation is constructed considering the number of task assignment on an agent according to their battery consumption restriction. The problem of task allocation is solved by table working method. Finally, simulation modeling of the methods based on table working method is carried out. Results show that the method has good performance and can improve the efficiency of the task execution.