• 제목/요약/키워드: Multi-Wedge Structure

검색결과 4건 처리시간 0.022초

극지대 구조물 형태에 따른 빙력고찰 (Level Ice Loads on Various Arctic Structures)

  • 조철희
    • 한국해양공학회지
    • /
    • 제10권2호
    • /
    • pp.20-27
    • /
    • 1996
  • Ice loads can determined by many factors like ice properies and dimension, velocity and type of structures. The magnitude of ice load varies with the failure mode which can be predicted by failure maps if the aspect ratio and strain rate are known. To reduce the ice force, various types of structure have been investigated and it is now known that the identor shape plays an important role in reducing ice load on Arctic offshoe structures. The conical and wedge structures are good applied examples in the Arctic region. In this study, ice forces on single wedge indentors are investigated for crushing failure mode. The ice loads on wedged indentors are compared with those on cylindrical structures. Also the concept of "ice annual"is introduced to verify the ice loads to multi and single wedge structures.tructures.

  • PDF

Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D hydroelastic slamming

  • Khayyer, Abbas;Gotoh, Hitoshi;Falahaty, Hosein;Shimizu, Yuma;Nishijima, Yusuke
    • Ocean Systems Engineering
    • /
    • 제7권3호
    • /
    • pp.299-318
    • /
    • 2017
  • The paper aims at illustrating several key issues and ongoing efforts for development of a reliable fully-Lagrangian particle-based solver for simulation of hydroelastic slamming. Fluid model is founded on the solution of Navier-Stokes along with continuity equations via an enhanced version of a projection-based particle method, namely, Moving Particle Semi-implicit (MPS) method. The fluid model is carefully coupled with a structure model on the basis of conservation of linear and angular momenta for an elastic solid. The developed coupled FSI (Fluid-Structure Interaction) solver is applied to simulations of high velocity impact of an elastic aluminum wedge and hydroelastic slammings of marine panels. Validations are made both qualitatively and quantitatively in terms of reproduced pressure as well as structure deformation. Several remaining challenges as well as important key issues are highlighted. At last, a recently developed multi-scale MPS method is incorporated in the developed FSI solver towards enhancement of its adaptivity.

쉘 모델을 이용한 공기 포일 스러스트 베어링의 열-유체-구조 연동 해석 (Thermo-Fluid-Structure Coupled Analysis of Air Foil Thrust Bearings using Shell Model)

  • 윤종완;문소연;박상신
    • Tribology and Lubricants
    • /
    • 제40권1호
    • /
    • pp.17-23
    • /
    • 2024
  • This study analyzes the thermal effects on the performance of an air foil thrust bearing (AFTB) using COMSOL Multiphysics to approximate actual bearing behavior under real conditions. An AFTB is a sliding-thrust bearing that uses air as a lubricant to support the axial load. The AFTB consists of top and bump foils and supports the rotating disk through the hydrodynamic pressure generated by the wedge effect from the inclined surface of the top foil and the elastic deformation of the bump foils, similar to a spring. The use of air as a lubricant has some advantages such as low friction loss and less heat generation, enabling air bearings to be widely used in high-speed rotating systems. However, even in AFTB, the effects of energy loss due to viscosity at high speeds, interface frictional heat, and thermal deformation of the foil caused by temperature increase cannot be ignored. Foil deformation derived from the thermal effect influences the minimum decay in film thickness and enhances the film pressure. For these reasons, performance analyses of isothermal AFTBs have shown few discrepancies with real bearing behavior. To account for this phenomenon, a thermal-fluid-structure analysis is conducted to describe the combined mechanics. Results show that the load capacity under the thermal effect is slightly higher than that obtained from isothermal analysis. In addition, the push and pull effects on the top foil and bump foil-free edges can be simulated. The differences between the isothermal and thermal behaviors are discussed.

동해 울릉분지 제 4기 질량류 퇴적체 분포 및 기원 (Distribution and Origin of Quaternary Mass Transport Deposit in the Ulleung Basin, East Sea)

  • 이영미;유동근;강년건;이보연
    • 지구물리와물리탐사
    • /
    • 제17권2호
    • /
    • pp.74-87
    • /
    • 2014
  • 동해 울릉분지에서 취득된 2차원 다중채널 탄성파 탐사자료의 해석에 의하면, 연구지역에 분포하는 제 4기 퇴적층은 침식부정합면에 의해 4개의 층서단위로 구분된다. 각 층서단위는 서로 다른 특징을 갖는 18개의 질량류 퇴적체로 구성된다. 탄성파 단면상에서 질량류 퇴적체는 캐오틱 혹은 투명한 음향상 특징을 보이며, 쐐기 혹은 렌즈상의 외부형태를 가진다. 질량류 퇴적체는 주로 울릉분지 남쪽사면 일대에 중첩되어 분포하며, 분지중앙으로 향하면서 층후가 얇아지는 경향을 보인다. 시간구조도에 의하면 연구지역의 중앙에는 주변보다 융기된 지형과 북서 및 북동방향의 저지대가 발달한다. 등시층후도에 의하면 연구지역의 남쪽으로부터 기원한 질량류 퇴적체는 사면을 따라 분지중앙으로 유입되었으며, 지구조운동으로 형성된 융기지형에 의해 두 방향으로 분리되어 발달하였다. 결과적으로 울릉분지에 분포하는 제 4기 질량류 퇴적체의 발달은 다량의 퇴적물 공급, 저해수면시기 동안의 가스하이드레이트 해리, 중앙부에 위치한 융기지형 등의 요인에 의해 크게 조절되었다.