• Title/Summary/Keyword: Multi-Vision

Search Result 491, Processing Time 0.021 seconds

Real-Time Motion Tracking Detection System for a Spherical Pendulum Using a USB Camera (USB 카메라를 이용한 실시간 구면진자 운동추적 감지시스템)

  • Moon, Byung-Yoon;Hong, Sung-Rak;Ha, Manh-Tuan;Kang, Chul-Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.9
    • /
    • pp.807-813
    • /
    • 2016
  • Recently, a spherical pendulum attached to an end-effector of a robot manipulator has been frequently used for a test bed of residual vibration suppression control in a multi-dimensional motion. However, there was no automatic tracking system to detect the current bob position on-line, and there was inconvenience to not be able to store the bob position in real time and plot the trajectory. In this study, we developed a two-dimensional, real-time bob-detecting system using a digital USB camera, of which the key is hardware component design and software C programming for fast image processing and interfacing. The developed system was applied to residual vibration suppression control of a two-dimensional spherical pendulum that is attached at the end-effector of a two degree-of-freedom SCARA robot, and the effectiveness of the developed system has been demonstrated.

Multi-sensor Intelligent Robot (멀티센서 스마트 로보트)

  • Jang, Jong-Hwan;Kim, Yong-Ho
    • The Journal of Natural Sciences
    • /
    • v.5 no.1
    • /
    • pp.87-93
    • /
    • 1992
  • A robotically assisted field material handling system designed for loading and unloading of a planar pallet with a forklift in unstructured field environment is presented. The system uses combined acoustic/visual sensing data to define the position/orientation of the pallet and to determine the specific locations of the two slots of the pallet, so that the forklift can move close to the slot and engage it for transport. In order to reduce the complexity of the material handling operation, we have developed a method based on the integration of 2-D range data of Poraloid ultrasonic sensor along with 2-D visual data of an optical camera. Data obtained from the two separate sources complements each other and is used in an efficient algorithm to control this robotically assisted field material handling system . Range data obtained from two linear scannings is used to determine the pan and tilt angles of a pallet using least mean square method. Then 2-D visual data is used to determine the swing angle and engagement location of a pallet by using edge detection and Hough transform techniques. The limitations of the pan and tilt orientation to be determined arc discussed. The system developed is evaluated through the hardware and software implementation. The experimental results are presented.

  • PDF

Design of a Background Image Based Multi-Degree-of-Freedom Pointing Device (배경영상 기반 다자유도 포인팅 디바이스의 설계)

  • Jang, Suk-Yoon;Kho, Jae-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.133-141
    • /
    • 2008
  • As interactive multimedia have come into wide use, user interfaces such as remote controllers or classical computer mice have several limitations that cause inconvenience. We propose a vision-based pointing device to resolve this problem. We analyzed the moving image from the camera which is embedded in the pointing device and estimate the movement of the device. The pose of the cursor can be determined from this result. To process in the real time, we used the low resolution of $288{\times}208$ pixel camera and comer points of the screen were tracked using local optical flow method. The distance from screen and device was calculated from the size of screen in the image. The proposed device has simple configurations, low cost, easy use, and intuitive handhold operation like traditional mice. Moreover it shows reliable performance even in the dark condition.

Fast Mask Operators for the edge Detection in Vision System (시각시스템의 Edge 검출용 고속 마스크 Operator)

  • 최태영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.4
    • /
    • pp.280-286
    • /
    • 1986
  • A newmethod of fast mask operators for edge detection is proposed, which is based on the matrix factorization. The output of each component in the multi-directional mask operator is obtained adding every image pixels in the mask area weighting by corresponding mask element. Therefore, it is same as the result of matrix-vector multiplication like one dimensional transform, i, e, , trasnform of an image vector surrounded by mask with a transform matrix consisted of all the elements of eack mask row by row. In this paper, for the Sobel and Prewitt operators, we find the transform matrices, add up the number of operations factoring these matrices and compare the performances of the proposed method and the standard method. As a result, the number of operations with the proposed method, for Sobel and prewitt operators, without any extra storage element, are reduced by 42.85% and 50% of the standard operations, respectively and in case of an image having 100x100 pixels, the proposed Sobel operator with 301 extra storage locations can be computed by 35.93% of the standard method.

  • PDF

A review on deep learning-based structural health monitoring of civil infrastructures

  • Ye, X.W.;Jin, T.;Yun, C.B.
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.567-585
    • /
    • 2019
  • In the past two decades, structural health monitoring (SHM) systems have been widely installed on various civil infrastructures for the tracking of the state of their structural health and the detection of structural damage or abnormality, through long-term monitoring of environmental conditions as well as structural loadings and responses. In an SHM system, there are plenty of sensors to acquire a huge number of monitoring data, which can factually reflect the in-service condition of the target structure. In order to bridge the gap between SHM and structural maintenance and management (SMM), it is necessary to employ advanced data processing methods to convert the original multi-source heterogeneous field monitoring data into different types of specific physical indicators in order to make effective decisions regarding inspection, maintenance and management. Conventional approaches to data analysis are confronted with challenges from environmental noise, the volume of measurement data, the complexity of computation, etc., and they severely constrain the pervasive application of SHM technology. In recent years, with the rapid progress of computing hardware and image acquisition equipment, the deep learning-based data processing approach offers a new channel for excavating the massive data from an SHM system, towards autonomous, accurate and robust processing of the monitoring data. Many researchers from the SHM community have made efforts to explore the applications of deep learning-based approaches for structural damage detection and structural condition assessment. This paper gives a review on the deep learning-based SHM of civil infrastructures with the main content, including a brief summary of the history of the development of deep learning, the applications of deep learning-based data processing approaches in the SHM of many kinds of civil infrastructures, and the key challenges and future trends of the strategy of deep learning-based SHM.

Recognition and Modeling of 3D Environment based on Local Invariant Features (지역적 불변특징 기반의 3차원 환경인식 및 모델링)

  • Jang, Dae-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.31-39
    • /
    • 2006
  • This paper presents a novel approach to real-time recognition of 3D environment and objects for various applications such as intelligent robots, intelligent vehicles, intelligent buildings,..etc. First, we establish the three fundamental principles that humans use for recognizing and interacting with the environment. These principles have led to the development of an integrated approach to real-time 3D recognition and modeling, as follows: 1) It starts with a rapid but approximate characterization of the geometric configuration of workspace by identifying global plane features. 2) It quickly recognizes known objects in environment and replaces them by their models in database based on 3D registration. 3) It models the geometric details the geometric details on the fly adaptively to the need of the given task based on a multi-resolution octree representation. SIFT features with their 3D position data, referred to here as stereo-sis SIFT, are used extensively, together with point clouds, for fast extraction of global plane features, for fast recognition of objects, for fast registration of scenes, as well as for overcoming incomplete and noisy nature of point clouds.

  • PDF

Adaptive V1-MT model for motion perception

  • Li, Shuai;Fan, Xiaoguang;Xu, Yuelei;Huang, Jinke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.371-384
    • /
    • 2019
  • Motion perception has been tremendously improved in neuroscience and computer vision. The baseline motion perception model is mediated by the dorsal visual pathway involving the cortex areas the primary visual cortex (V1) and the middle temporal (V5 or MT) visual area. However, few works have been done on the extension of neural models to improve the efficacy and robustness of motion perception of real sequences. To overcome shortcomings in situations, such as varying illumination and large displacement, an adaptive V1-MT motion perception (Ad-V1MTMP) algorithm enriched to deal with real sequences is proposed and analyzed. First, the total variation semi-norm model based on Gabor functions (TV-Gabor) for structure-texture decomposition is performed to manage the illumination and color changes. And then, we study the impact of image local context, which is processed in extra-striate visual areas II (V2), on spatial motion integration by MT neurons, and propose a V1-V2 method to extract the image contrast information at a given location. Furthermore, we take feedback inputs from V2 into account during the polling stage. To use the algorithm on natural scenes, finally, multi-scale approach has been used to handle the frequency range, and adaptive pyramidal decomposition and decomposed spatio-temporal filters have been used to diminish computational cost. Theoretical analysis and experimental results suggest the new Ad-V1MTMP algorithm which mimics human primary motion pathway has universal, effective and robust performance.

Two person Interaction Recognition Based on Effective Hybrid Learning

  • Ahmed, Minhaz Uddin;Kim, Yeong Hyeon;Kim, Jin Woo;Bashar, Md Rezaul;Rhee, Phill Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.751-770
    • /
    • 2019
  • Action recognition is an essential task in computer vision due to the variety of prospective applications, such as security surveillance, machine learning, and human-computer interaction. The availability of more video data than ever before and the lofty performance of deep convolutional neural networks also make it essential for action recognition in video. Unfortunately, limited crafted video features and the scarcity of benchmark datasets make it challenging to address the multi-person action recognition task in video data. In this work, we propose a deep convolutional neural network-based Effective Hybrid Learning (EHL) framework for two-person interaction classification in video data. Our approach exploits a pre-trained network model (the VGG16 from the University of Oxford Visual Geometry Group) and extends the Faster R-CNN (region-based convolutional neural network a state-of-the-art detector for image classification). We broaden a semi-supervised learning method combined with an active learning method to improve overall performance. Numerous types of two-person interactions exist in the real world, which makes this a challenging task. In our experiment, we consider a limited number of actions, such as hugging, fighting, linking arms, talking, and kidnapping in two environment such simple and complex. We show that our trained model with an active semi-supervised learning architecture gradually improves the performance. In a simple environment using an Intelligent Technology Laboratory (ITLab) dataset from Inha University, performance increased to 95.6% accuracy, and in a complex environment, performance reached 81% accuracy. Our method reduces data-labeling time, compared to supervised learning methods, for the ITLab dataset. We also conduct extensive experiment on Human Action Recognition benchmarks such as UT-Interaction dataset, HMDB51 dataset and obtain better performance than state-of-the-art approaches.

A Study on Various Attention for Improving Performance in Single Image Super Resolution (초고해상도 복원에서 성능 향상을 위한 다양한 Attention 연구)

  • Mun, Hwanbok;Yoon, Sang Min
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.898-910
    • /
    • 2020
  • Single image-based super-resolution has been studied for a long time in computer vision because of various applications. Various deep learning-based super-resolution algorithms are introduced recently to improve the performance by reducing side effects like blurring and staircase effects. Most deep learning-based approaches have focused on how to implement the network architecture, loss function, and training strategy to improve performance. Meanwhile, Several approaches using Attention Module, which emphasizes the extracted features, are introduced to enhance the performance of the network without any additional layer. Attention module emphasizes or scales the feature map for the purpose of the network from various perspectives. In this paper, we propose the various channel attention and spatial attention in single image-based super-resolution and analyze the results and performance according to the architecture of the attention module. Also, we explore that designing multi-attention module to emphasize features efficiently from various perspectives.

A method of improving the quality of 3D images acquired from RGB-depth camera (깊이 영상 카메라로부터 획득된 3D 영상의 품질 향상 방법)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.637-644
    • /
    • 2021
  • In general, in the fields of computer vision, robotics, and augmented reality, the importance of 3D space and 3D object detection and recognition technology has emerged. In particular, since it is possible to acquire RGB images and depth images in real time through an image sensor using Microsoft Kinect method, many changes have been made to object detection, tracking and recognition studies. In this paper, we propose a method to improve the quality of 3D reconstructed images by processing images acquired through a depth-based (RGB-Depth) camera on a multi-view camera system. In this paper, a method of removing noise outside an object by applying a mask acquired from a color image and a method of applying a combined filtering operation to obtain the difference in depth information between pixels inside the object is proposed. Through each experiment result, it was confirmed that the proposed method can effectively remove noise and improve the quality of 3D reconstructed image.