• Title/Summary/Keyword: Multi-UAV System

Search Result 94, Processing Time 0.027 seconds

Development of Flight Control Application for Unmanned Aerial Vehicle Employing Linux OS (리눅스 기반 무인항공기 제어 애플리케이션 개발)

  • Kim Myoung-Hyun;Moon Seungbin;Hong Sung Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.78-84
    • /
    • 2006
  • This paper describes UAV (Unmanned Aerial Vehicle) control system which employs PC104 modules. It is controlled by application program based on Linux OS. This application consists of both Linux device driver in kernel-space and user application in user-space. In order to get data required in the unmanned flight, external devices are connected to PC104 modules. We explain how Linux device drivers deal with data transmitted by external devices and we account for how the user application controls UAV on the basis of data processed in the device driver as well. Furthermore we look into the role of GCS (Ground Control Station) which is to monitor the state of UAV.

A High-speed Automatic Mapping System Based on a Multi-sensor Micro UAV System (멀티센서 초소형 무인항공기 기반의 고속 자동 매핑 시스템)

  • Jeon, Euiik;Choi, Kyoungah;Lee, Impyeong
    • Spatial Information Research
    • /
    • v.23 no.3
    • /
    • pp.91-100
    • /
    • 2015
  • We developed a micro UAV based rapid mapping system that provides geospatial information of target areas in a rapid and automatic way. Users can operate the system easily although they are inexperienced in UAV operation and photogrammetric processes. For the aerial data acquisition, we constructed a micro UAV system mounted with a digital camera, a GPS/IMU, and a control board for the sensor integration and synchronization. We also developed a flight planning software and data processing software for the generation of geo-spatial information. The processing software operates automatically with a high speed to perform data quality control, image matching, georeferencing, and orthoimage generation. With the system, we have generated individual ortho-images within 30 minutes from 57 images of 3cm resolution acquired from a target area of $400m{\times}300m$.

Application of UAV-based RGB Images for the Growth Estimation of Vegetable Crops

  • Kim, Dong-Wook;Jung, Sang-Jin;Kwon, Young-Seok;Kim, Hak-Jin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.45-45
    • /
    • 2017
  • On-site monitoring of vegetable growth parameters, such as leaf length, leaf area, and fresh weight, in an agricultural field can provide useful information for farmers to establish farm management strategies suitable for optimum production of vegetables. Unmanned Aerial Vehicles (UAVs) are currently gaining a growing interest for agricultural applications. This study reports on validation testing of previously developed vegetable growth estimation models based on UAV-based RGB images for white radish and Chinese cabbage. Specific objective was to investigate the potential of the UAV-based RGB camera system for effectively quantifying temporal and spatial variability in the growth status of white radish and Chinese cabbage in a field. RGB images were acquired based on an automated flight mission with a multi-rotor UAV equipped with a low-cost RGB camera while automatically tracking on a predefined path. The acquired images were initially geo-located based on the log data of flight information saved into the UAV, and then mosaicked using a commerical image processing software. Otsu threshold-based crop coverage and DSM-based crop height were used as two predictor variables of the previously developed multiple linear regression models to estimate growth parameters of vegetables. The predictive capabilities of the UAV sensing system for estimating the growth parameters of the two vegetables were evaluated quantitatively by comparing to ground truth data. There were highly linear relationships between the actual and estimated leaf lengths, widths, and fresh weights, showing coefficients of determination up to 0.7. However, there were differences in slope between the ground truth and estimated values lower than 0.5, thereby requiring the use of a site-specific normalization method.

  • PDF

Conceptual Design and Study on the Performance Enhancement of Tilt Rotor UAV for Disaster and Policing Operation (재난치안용 틸트로터 무인기 개념설계 및 성능 향상 연구)

  • Kim, Myung Jae;Lee, Myeong Kyu
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.40-46
    • /
    • 2021
  • In this study, an aerodynamic configuration design and study on performance enhancement of a tilt-rotor UAV were conducted for improving mission capabilities compared to multi-copter type UAV, MC-1/2/3 developed for disaster and policing operation. To improve performance, a new TR5X configuration was developed by modifying the fuselage and tail shape of TR60 UAV and additionally attaching an extended wing to the nacelle. Aerodynamic performances of TR60 and TR5X were compared through computational fluid dynamics (CFD) analysis. In addition, flight performance analysis of full aircraft was conducted. Results showed that main performance requirements of TR5X were satisfied.

Ship Positioning Using Multi-Sensory Data for a UAV Based Marine Surveillance (무인항공기 기반 해양 감시를 위한 멀티센서 데이터를 활용한 선박 위치 결정)

  • Ryu, Hyoungseok;Klimkowska, Anna Maria;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.393-406
    • /
    • 2018
  • Every year in the ocean, various accidents occur frequently and illegal fishing is rampant. Moreover, their size and frequency are also increasing. In order to reduce losses of life or property caused by these, it is necessary to have a means to perform remote monitoring quickly. As an effective platform of such monitoring means, an Unmanned Aerial Vehicle (UAV) is receiving the spotlight. In these situations where marine accidents or illegal fishing occur, main targets of monitoring are ships. In this study, we propose a UAV based ship monitoring system and suggest a method of determining ship positions using UAV multi-sensory data. In the proposed method, firstly, the position and attitude of individual images are determined by using the pre-performed system calibration results and GPS/INS data obtained at the time when images were acquired. In addition, after the ship being detected automatically or semi-automatically from the individual images, the absolute coordinates of the detected ships are determined. The proposed method was applied to actual data measured at 200 m, 350 m, and 500 m altitude, the ship position can be determined with accuracy of 4.068 m, 8.916 m, and 13.734 m, respectively. According to the minimum standard of a hydrographical survey, the ship positioning results of 200 m and 350 m data satisfy grade S and the results of 500 m data do grade 1a, where the accuracy is required for positioning the coastline and topography less significant to navigation order. Therefore, it is expected that the proposed method can be effectively used for various purposes of marine monitoring or surveying.

Robust Hcontrol applied on a fixed wing unmanned aerial vehicle

  • Uyulan, Caglar;Yavuz, Mustafa Tolga
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.371-389
    • /
    • 2019
  • The implementation of a robust $H_{\infty}$ Control, which is numerically efficient for uncertain nonlinear dynamics, on longitudinal and lateral autopilots is realised for a quarter scale Piper J3-Cub model accepted as an unmanned aerial vehicle (UAV) under the condition of sensor noise and disturbance effects. The stability and control coefficients of the UAV are evaluated through XFLR5 software, which utilises a vortex lattice method at a predefined flight condition. After that, the longitudinal trim point is computed, and the linearization process is performed at this trim point. The "${\mu}$-Synthesis"-based robust $H_{\infty}$ control algorithm for roll, pitch and yaw displacement autopilots are developed for both longitudinal and lateral linearised nonlinear dynamics. Controller performances, closed-loop frequency responses, nominal and perturbed system responses are obtained under the conditions of disturbance and sensor noise. The simulation results indicate that the proposed control scheme achieves robust performance and guarantees stability under exogenous disturbance and measurement noise effects and model uncertainty.

Robust Maneuvering Target Tracking Applying the Concept of Multiple Model Filter and the Fusion of Multi-Sensor (다중센서 융합 및 다수모델 필터 개념을 적용한 강인한 기동물체 추적)

  • Hyun, Dae-Hwan;Yoon, Hee-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.1
    • /
    • pp.51-64
    • /
    • 2009
  • A location tracking sensor such as GPS, INS, Radar, and optical equipments is used in tracking Maneuvering Targets with a multi-sensor, and such systems are used to track, detect, and control UAV, guided missile, and spaceship. Until now, Most of the studies related to tracking Maneuvering Targets are on fusing multiple Radars, or adding a supplementary sensor to INS and GPS. However, A study is required to change the degree of application in fusions since the system property and error property are different from sensors. In this paper, we perform the error analysis of the sensor properties by adding a ground radar to GPS and INS for improving the tracking performance by multi-sensor fusion, and suggest the tracking algorithm that improves the precision and stability by changing the sensor probability of each sensor according to the error. For evaluation, we extract the altitude values in a simulation for the trajectory of UAV and apply the suggested algorithm to carry out the performance analysis. In this study, we change the weight of the evaluated values according to the degree of error between the navigation information of each sensor to improve the precision of navigation information, and made it possible to have a strong tracking which is not affected by external purposed environmental change and disturbance.

  • PDF

Dynamic Modeling based Flight Control of Hexa-Rotor Helicopter System (헥사로터형 헬리콥터의 동역학 모델기반 비행제어)

  • Han, Jae-Gyun;Jin, Taeseok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.398-404
    • /
    • 2015
  • In this paper, we describe the design and performance of a prototype multi-rotor unmaned aerial vehicle( UAV) platform featuring an inertial measurement unit(IMU) based autonomous-flying for use in bluetooth communication environments. Although there has been a fair amount of study of free-flying UAV with multi-rotors, the more recent trend has been to outfit hexarotor helicopter with gimbal to support various services. This paper introduces the hardware and software systems toward very compact and autonomous hexarotors, where they can perform search, rescue, and surveillance missions without external assistance systems like ground station computers, high-performance remote control devices or vision system. The proposed system comprises the construction of the test hexarotor platform, the implementation of an IMU, mathematical modeling and simulation in the helicopter. Furthermore, the hexarotor helicopter with implemented IMU is connected with a micro controller unit(MCU)(ARM-cortex) board. The micro-controller is able to command the rotational speed of the rotors and to get the measurements of the IMU as input signals. The control simulation and experiment on the real system are implemented in the test platform, evaluated and compared against each other.

Implementation of Agricultural Multi-UAV System with Distributed Swarm Control Algorithm into a Simulator (분산군집제어 알고리즘 기반 농업용 멀티 UAV 시스템의 시뮬레이터 구현)

  • Ju, Chanyoung;Park, Sungjun;Son, Hyoung Il
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.37-38
    • /
    • 2017
  • 최근 방제 및 예찰과 같은 농작업에 단일 UAV(Unmanned Aerial Vehicle)시스템이 적용되고 있지만, 가반하중과 체공시간 등 기존시스템의 문제가 점차 대두되면서 작업 시간을 보다 단축시키고 작업 효율을 극대화 할 수 있는 농업용 멀티 UAV시스템의 필요성이 증대되고 있다. 본 논문에서는 작업자가 다수의 농업용 UAV를 효과적으로 제어할 수 있는 분산군집제어 알고리즘을 제안하며 알고리즘 검증 및 평가를 위한 시뮬레이터를 소개한다. 분산군집제어는 UAV 제어 계층, VP(Virtual Point) 제어 계층, 원격제어 계층으로 이루어진 3계층 제어구조를 가진다. UAV 제어 계층에서 각 UAV는 point mass로 모델링 되는 VP의 이상적인 경로를 추종하도록 제어한다. VP 제어 계층에서 각 VP는 입력 $p_i(t)=u^c_i+u^o_i+u^{co}_i+u^h_i$-(1)을 받아 제어되는데 여기서, $u^c_i{\in}{\mathbb{R}}^3$는 VP 사이의 충돌방지제어, $u^o_i{\in}{\mathbb{R}}^3$는 장애물과의 충돌방지제어, $u^{co}_i{\in}{\mathbb{R}}^3$는 UAV 상호간의 협조제어, $u^h_i{\in}{\mathbb{R}}^3$는 작업자로부터의 원격제어명령이다. (1)의 제어입력에서 충돌방지제어는 각 $u^i_c:=-{\sum\limits_{j{\in}{\eta}_i}}{\frac {{\partial}{\phi}_{ij}^c({\parallel}p_i-p_j{\parallel})^T}{{\partial}p_i}}$-(2), $u^o_c:=-{\sum\limits_{r{\in}O_i}}{\frac {{\partial}{\phi}_{ir}^o({\parallel}p_i-p^o_r{\parallel})^T}{{\partial}p_i}}$-(3)로 정의되면 ${\phi}^c_{ij}$${\phi}^o_{ir}$는 포텐셜 함수를 나타낸다. 원격제어 계층에서 작업자는 햅틱 인터페이스를 통해 VP의 속도를 제어하게 된다. 이때 스케일변수 ${\lambda}$에 대하여 VP의 원격제어명령은 $u^t_i(t)={\lambda}q(t)$로 정의한다. UAV 시뮬레이터는 리눅스 환경에서 ROS(Robot Operating Systems)를 기반한 3차원 시뮬레이터인 Gazebo상에 구축하였으며, 마스터와 슬레이브 간의 제어 명령은 TCPROS를 통해 서로 주고받는다. UAV는 PX4 기반의 3DR Solo 모델을 사용하였으며 MAVROS를 통해 MAVLink 통신 프로토콜에 접속하여 UAV의 고도, 속도 및 가속도 등의 상태정보를 받을 수 있다. 현재 멀티 드론 시스템을 Gazebo 환경에 구축하였으며, 추후 시뮬레이터 상에 분산군집제어 알고리즘을 구현하여 검증 및 평가를 진행하고자 한다.

  • PDF

Intercooler for Multi-stage Turbocharger Design and Analysis of the Hydrogen Reciprocating Engine for HALE UAV (고고도 장기체공 무인기용 수소 왕복 엔진의 다단터보차저용 인터쿨러 설계 및 해석)

  • Lee, Yang Ji;Rhee, Dong Ho;Kang, Young Seok;Lim, Byoeung Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.65-73
    • /
    • 2017
  • Intercoolers for multi-stage turbocharger of the hydrogen reciprocating engine for HALE UAV are installed for reducing the charged air inlet temperature of the engine. The intercooler is air to air, cross flow, plate-fin type and the fin configuration is offset-strip fin which is referenced from the heat exchanger of the ERAST. Most of HALE UAV's cruising altitude is 60,000 ft and the density of air for this altitude is very low compared to sea level. Therefore the required heat transfer area for the HALE UAV is about three-times bigger than the sea level. Consequently, it is essential to design to meet the required efficiency of intercooler in the range of not excessively growing the weight of the heat exchanger. The quasi-one dimensional heat transfer design/analysis for satisfying the requirement of the engine are written in this paper. The numerical analyses for estimating the coolant flow rate of the engine bay and pressure loss in the header and core are also summarized.