• Title/Summary/Keyword: Multi-Threshold

Search Result 458, Processing Time 0.027 seconds

A Novel Thresholding for Prediction Analytics with Machine Learning Techniques

  • Shakir, Khan;Reemiah Muneer, Alotaibi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.33-40
    • /
    • 2023
  • Machine-learning techniques are discovering effective performance on data analytics. Classification and regression are supported for prediction on different kinds of data. There are various breeds of classification techniques are using based on nature of data. Threshold determination is essential to making better model for unlabelled data. In this paper, threshold value applied as range, based on min-max normalization technique for creating labels and multiclass classification performed on rainfall data. Binary classification is applied on autism data and classification techniques applied on child abuse data. Performance of each technique analysed with the evaluation metrics.

Adaptive Multi-threshold Based Mura Detection on A LCD Panel (적응적 임계화법에 기반한 LCD 얼룩 검사)

  • 류재승;곽동민;박길흠
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.347-350
    • /
    • 2003
  • In this paper, a new automated defects detection method for a TFT-LCD panel is presented. An input image is preprocessed to lessen small abnormal noises and non-uniformity of the image. The adaptive multi-thresholds are used to detect Muras, which are the major defects occurred on TFT-LCD panels. Those are determined adaptively depending on the brightness and the brightness distribution of a local block. For the synthetic images and real Mura images, the proposed algorithm can effectively detect Muras in a reasonable time.

  • PDF

Fault Diagnosis of the Nonlinear Systems Using Neural Network-Based Multi-Fault Models (신경회로망기반 다중고장모델에 의한 비선형시스템의 고장진단)

  • 이인수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.115-118
    • /
    • 2001
  • In this paper we propose an FDI(fault detection and isolation) algorithm using neural network-based multi-fault models to detect and isolate single faults in nonlinear systems. When a change in the system occurs, the errors between the system output and the neural network nominal system output cross a threshold, and once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output.

  • PDF

Identification of Age Threshold for Driving Performance (운전능력에 연관된 인적특성의 연령 임계점 연구)

  • Kim, Tae-Ho;Ko, Joon-Ho;Won, Jai-Mu;Hu, Ec
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.71-78
    • /
    • 2008
  • This study aims to identity the age group where driving performance significantly decreases based on the data collected from the Korea Transportation Safety Authority's driver aptitude tests in 2006. The test includes following six driving simulator-based tests: estimation of moving objects' speed, estimation of stopping distance, three tests for drivers' multi-task ability, and kinetic depth perception. These six test results were utilized for the identification of the age threshold applying the CART technique, suggesting driving ability significantly be decreased over 50s. This finding was confirmed by two analyses using the accident history data containing the information of accident and non-accident drivers and the degree of accident severity. The results of this study imply that accident prevention efforts should be enhanced over a wider range of age group than the current practice where the age of 65 is generally applied for the threshold dividing senior and non-senior driver groups.

An adaptive method of multi-scale edge detection for underwater image

  • Bo, Liu
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.217-231
    • /
    • 2016
  • This paper presents a new approach for underwater image analysis using the bi-dimensional empirical mode decomposition (BEMD) technique and the phase congruency information. The BEMD algorithm, fully unsupervised, it is mainly applied to texture extraction and image filtering, which are widely recognized as a difficult and challenging machine vision problem. The phase information is the very stability feature of image. Recent developments in analysis methods on the phase congruency information have received large attention by the image researchers. In this paper, the proposed method is called the EP model that inherits the advantages of the first two algorithms, so this model is suitable for processing underwater image. Moreover, the receiver operating characteristic (ROC) curve is presented in this paper to solve the problem that the threshold is greatly affected by personal experience when underwater image edge detection is performed using the EP model. The EP images are computed using combinations of the Canny detector parameters, and the binaryzation image results are generated accordingly. The ideal EP edge feature extractive maps are estimated using correspondence threshold which is optimized by ROC analysis. The experimental results show that the proposed algorithm is able to avoid the operation error caused by manual setting of the detection threshold, and to adaptively set the image feature detection threshold. The proposed method has been proved to be accuracy and effectiveness by the underwater image processing examples.

Investigation of Biases for Variance Components on Multiple Traits with Varying Number of Categories in Threshold Models Using Bayesian Inferences

  • Lee, D.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.925-931
    • /
    • 2002
  • Gibbs sampling algorithms were implemented to the multi-trait threshold animal models with any combinations of multiple binary, ordered categorical, and linear traits and investigate the amount of bias on these models with two kinds of parameterization and algorithms for generating underlying liabilities. Statistical models which included additive genetic and residual effects as random and contemporary group effects as fixed were considered on the models using simulated data. The fully conditional posterior means of heritabilities and genetic (residual) correlations were calculated from 1,000 samples retained every 10th samples after 15,000 samples discarded as "burn-in" period. Under the models considered, several combinations of three traits with binary, multiple ordered categories, and continuous were analyzed. Five replicates were carried out. Estimates for heritabilities and genetic (residual) correlations as the posterior means were unbiased when underlying liabilities for a categorical trait were generated given by underlying liabilities of the other traits and threshold estimates were rescaled. Otherwise, when parameterizing threshold of zero and residual variance of one for binary traits, heritability estimates were inflated 7-10% upward. Genetic correlation estimates were biased upward if positively correlated and downward if negatively correlated when underling liabilities were generated without accounting for correlated traits on prior information. Residual correlation estimates were, consequently, much biased downward if positively correlated and upward if negatively correlated in that case. The more categorical trait had categories, the better mixing rate was shown.

A Study on the Voxel Coloring using Multi-variable Thresholding (다중 가변 문턱값을 이용한 복셀 칼라링 기법에 관한 연구)

  • Kim Hyo-Sung;Lee Sang-Wook;Nam Ki-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.1102-1110
    • /
    • 2005
  • In this paper, we proposed a advanced approach to resolve the trade-off problem for the threshold value determining the photo-consistency in the previous algorithms. The threshold value for the surface voxel is substituted the photo-consistency value of the inside voxel. As iterating the voxel coloring process, the threshold is approached to the optimal value for the individual surface voxel. we present an energy minimization formulation of the binary labeling problem that surface voxels classify into opacity or transparency. The energy formula consists of the data term and the smoothness term. As considering neighboring voxels in the labeling problem, the unevenness of reconstructed surface is reduced. The labeling whose energy is the global minimum can be computed using a graph cut.

A Study on the Reliability Comparison of Median Frequency and Spike Parameter and the Improved Spike Detection Algorithm for the Muscle Fatigue Measurement (근피로도 측정을 위한 중간 주파수와 Spike 파라미터의 신뢰도 비교 및 향상된 Spike 검출 알고리듬에 관한 연구)

  • 이성주;홍기룡;이태우;이상훈;김성환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.5
    • /
    • pp.380-388
    • /
    • 2004
  • This study proposed an improved spike detection algorithm which automatically detects suitable spike threshold on the amplitude of surface electromyography(SEMG) signal during isometric contraction. The EMG data from the low back muscles was obtained in six channels and the proposed signal processing algorithm is compared with the median frequency and Gabriel's spike parameter. As a result, the reliability of spike parameter was inferior to the median frequency. This fact indicates that a spike parameter is inadequate for analysis of multi-channel EMG signal. Because of uncertainty of fixed spike threshold, the improved spike detection algorithm was proposed. It automatically detects suitable spike threshold depending on the amplitude of the EMG signal, and the proposed algorithm was able to detect optimal threshold based on mCFAR(modified Constant False Alarm Rate) in the every EMG channel. In conclusion, from the reliability points of view, neither median frequency nor existing spike detection algorithm was superior to the proposed method.

Estimation of Genetic Parameters for Calving Ease by Heifers and Cows Using Multi-trait Threshold Animal Models with Bayesian Approach

  • Lee, D.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1085-1090
    • /
    • 2002
  • Genetic parameters for birth weights (BWT), calving ease scores observed from calves born by heifers (CEH), and calving ease scores observed from calves born by cows (CEC) were estimated using Bayesian methodology with Gibbs sampling in different threshold animal models. Data consisted of 77,458 records for calving ease scores and birth weights in Gelbvieh cattle. Gibbs samplers were used to obtain the parameters of interest for the categorical traits in two univariate threshold animal models, a bivariate threshold animal model, and a three-trait linear-threshold animal model. Samples of heritabilities and genetic correlations were calculated from the posterior means of dispersion parameters. In a univariate threshold animal model with CEH (model 1), the posterior means of heritabilities for calving ease was 0.35 for direct genetic effects and 0.18 for maternal genetic effects. In the other univariate threshold model with CEC (model 2), the posterior means of heritabilities of CEC was 0.28 for direct genetic effects and 0.18 for maternal genetic effects. In a bivariate threshold model with CEH and CEC (model 3), heritability estimates were similar to those in unvariate threshold models. In this model, genetic correlation between heifer calving ease and cow calving ease was 0.89 and 0.87 for direct genetic effect and maternal genetic effects, respectively. In a three-trait animal model, which contained two categorical traits (CEH and CEC) and one continuous trait (BWT) (model 4), heritability estimates of CEH and CEC for direct (maternal) genetic effects were 0.40 (0.23) and 0.23 (0.13), respectively. In this model, genetic correlation estimates between CEH and CEC were 0.89 and 0.66 for direct genetic effects and maternal effects, respectively. These estimates were greater than estimates between BWT and CEH (0.82 and 0.34) or BWT and CEC (0.85 and 0.26). This result indicates that CEH and CEC should be high correlated rather than estimates between calving ease and birth weight. Genetic correlation estimates between direct genetic effects and maternal effects were -0.29, -0.31 and 0.15 for BWT, CEH and CEC, respectively. Correlation for permanent environmental effects between BWT and CEC was -0.83 in model 4. This study can provide genetic evaluation for calving ease with other continuous traits jointly with assuming that calving ease from first calving was a same trait to calving ease from later parities calving. Further researches for reliability of dispersion parameters would be needed even if the more correlated traits would be concerned in the model, the higher reliability could be obtained, especially on threshold model with property that categorical traits have little information.

Distributed Authentication Model using Multi-Level Cluster for Wireless Sensor Networks (무선센서네트워크를 위한 다중계층 클러스터 기반의 분산형 인증모델)

  • Shin, Jong-Whoi;Yoo, Dong-Young;Kim, Seog-Gyu
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.3
    • /
    • pp.95-105
    • /
    • 2008
  • In this paper, we propose the DAMMC(Distributed Authentication Model using Multi-level Cluster) for wireless sensor networks. The proposed model is that one cluster header in m-layer has a role of CA(Certificate Authority) but it just authenticates sensor nodes in lower layer for providing an efficient authentication without authenticating overhead among clusters. In here, the m-layer for authentication can be properly predefined by user in consideration of various network environments. And also, the DAMMC uses certificates based on the threshold cryptography scheme for more reliable configuration of WSN. Experimental results show that the cost of generation and reconfiguration certification are decreased but the security performance are increased compared to the existing method.

  • PDF