• Title/Summary/Keyword: Multi-Stamping

Search Result 25, Processing Time 0.024 seconds

Multicriteria shape design of a sheet contour in stamping

  • Oujebbour, Fatima-Zahra;Habbal, Abderrahmane;Ellaia, Rachid;Zhao, Ziheng
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • One of the hottest challenges in automotive industry is related to weight reduction in sheet metal forming processes, in order to produce a high quality metal part with minimal material cost. Stamping is the most widely used sheet metal forming process; but its implementation comes with several fabrication flaws such as springback and failure. A global and simple approach to circumvent these unwanted process drawbacks consists in optimizing the initial blank shape with innovative methods. The aim of this paper is to introduce an efficient methodology to deal with complex, computationally expensive multicriteria optimization problems. Our approach is based on the combination of methods to capture the Pareto Front, approximate criteria (to save computational costs) and global optimizers. To illustrate the efficiency, we consider the stamping of an industrial workpiece as test-case. Our approach is applied to the springback and failure criteria. To optimize these two criteria, a global optimization algorithm was chosen. It is the Simulated Annealing algorithm hybridized with the Simultaneous Perturbation Stochastic Approximation in order to gain in time and in precision. The multicriteria problems amounts to the capture of the Pareto Front associated to the two criteria. Normal Boundary Intersection and Normalized Normal Constraint Method are considered for generating a set of Pareto-optimal solutions with the characteristic of uniform distribution of front points. The computational results are compared to those obtained with the well-known Non-dominated Sorting Genetic Algorithm II. The results show that our proposed approach is efficient to deal with the multicriteria shape optimization of highly non-linear mechanical systems.

A Study on the Development of Soft Stamping Printing Equipment (소프트 스탬핑 프린팅 장비 개발에 관한 연구)

  • Jang, Nam-Eun;Kim, Nam-Kuk;Lee, Youn-Seop;Kim, Youg-Tae;Shin, Kwan-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.259-262
    • /
    • 2009
  • Several universities in Korea are beginning studies related to soft stamping processes but since the studies are done with manual works thus systematic tests can't be performed due to difficulties in producing reproducible and repeatable fine patterns. Therefore, the phenomenon of destruction of the pattern forms of elastic polymers occurred during working because of inconsistent printing pressures and pinting time and there have been difficulties in maintaining flatness or producing uniform and fault-free fine structures in pinting large areas and also, there have been difficulties in multi-layered processes as patterns were changed by contacts in registering and errors in alignments. The purpose of development of this technology is to improve the process of soft lithography so that contacts between PDMS stamps and metal coated substrates in order to develop a stamp printing device that can not only shorten but also optimize processes, secure reproducibility and repeatability and is advantageous in printing large areas. Also, using this technology, this author is to develop equipment technologies and applied technologies for nano grade pattern printing processes with new concepts based on fine contact printing processes in order to apply them to diverse nano pattering processes.

  • PDF

Design for the multistage sheet metal forming of wheel disks by Design of Experiment (실험계획법을 이용한 휠 디스크의 다단판재성형 공정 설계)

  • 이명균;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.278-282
    • /
    • 2003
  • There is a strong industrial demands for the development of light-vehicle to improve fuel efficiency. It is more effective to reduce weight of the parts directly driven by an automobile engine. So the saving in weight of wheels which is operated by an automobile engine improve fuel efficiency more than other parts. There are many step of sheet metal forming in fabricating automotive wheel, so that it is difficult to design process and tools of multi-stage stamping. Traditionally, design process and tools have depended on the experience of skilled workers and it has done by trial and error methods. However, it needs too much costs and time. Taguchi methods has an advantage of the number of required experiments and reliability compared with trial and error method. In this study, Taguchi methods and response surface methods are applied to design process and tools of automotive wheel. As a result, the principal variables are selected and process conditions are optimized.

  • PDF

Optimization of Initial Blank Shape of Multi-stage Deep Drawing for Improvement of Formability (타원형 다단 딥 드로잉 제품의 성형성 향상을 위한 초기 소재 형상 최적 설계)

  • Lee, Sa-Rang;Park, Sang-Min;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.696-701
    • /
    • 2016
  • Multi-stage deep drawing is a widely used industrial manufacturing process, and its applications are gradually expanding to both small products and large metallic products. The USB C-type socket used in smart phones, for example, is manufactured using oval multi-stage deep drawing. The socket is very small and slender and it requires precise manufacturing. The thickness distribution of the final product is guaranteed only if it is uniform throughout the overall process. Therefore, minimizing the height difference between long and short sidewalls after the first operation is important for this goal. An initial blank optimization was performed for an oval-type drawing process based on finite element simulations. The goal was to determine an initial blank geometry that can maintain uniform height and thickness after the first draw operation. The initial blank shape of the sheet metal was optimized, and the results show that it satisfied the conditions of minimal thickness reduction and even thickness distribution. The geometry from the optimized simulation was compared with experimental results, which showed good agreement.

A Study for Stamping of Patchwork with Resistance Spot Weld (저항 점용접에 의한 실러 패치워크 적용 판재 프레스 성형 연구)

  • Lee, Gyeong-Min;Jung, Chan-Yeong;Song, Il-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.25-31
    • /
    • 2018
  • Recently, research on the development of lightweight vehicle bodies is increasing continuously as a response to fuel economy regulations. To reduce the weight of a vehicle body, a conventional steel plate has been substituted by light weight material with high specific strength and the jointing of multi-materials is generally applied. On the other hand, the customer's demand for safety and emotional quality in NVH (Noise, Vibration and Harshness) is becoming increasingly important. Therefore, a light weight with proper strength and NVH quality is needed. In the view of light weighting and NVH quality, the application of a vibration proof steel plate can be an effective solution but the formability of a sandwich panel is different with a conventional steel sheet. Therefore, careful analysis of formability is required. This study aims to characterize the formability of a sandwich high-strength steel plate. The high-strength steel plates of different thicknesses with resistance spot welding and sealer bonding were analyzed using forming limits diagram through a cup drawing test.

Motor vehicle body assembly and auto-welding (차체조립과 자동용접)

  • 이승복
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.19-26
    • /
    • 1981
  • 자동차제조에 있어서의 용접은 신뢰성 양산과 생력화에 대응하여 접합 조립하는 방법으로 특이한 분야를 형성하여 발전되었다. 예를 들면, 자동차의 생산은 기본적으로 양산체제를 갖추고 있 어서, 일반적으로 노동집약형 산업이라고 불리어지며 그 제조공정을 보면 stamping press 공정과 같이 용접공정도 비교적 장치산업적인 분야로 빠르게 자동화나 성인화 내지 무인화로 진행되고 있다. 자동차용접은 사람이 portable spot welder로 한점씩 용접하지만 양산에 대비한 합리화와 안정화를 위하여 다점용접 (multi spot weld)라는 자동화공법의 도입이 불가피하며 금일의 자 동차생산에 있어서 상식화가 되고 있다. 이것은 한개의 차체라면 차형의 대조 또는 press panel의 수에 따라 차이가 조금 있으나 약 4-5 천점의 점용접이 필요하기 때문에 여러 가지 반송장치와 조합하여 대규모의 line설비로 발전되어 가고 있다. 이와 같이 용접공정의 자동화는 생산성을 높이는 반면에 전용성이 높기 때문에 설계변경에 대한 초기투자의 용접설비 대부분을 갱신하여야 하는 새로운 투자의 필요문제가 증대되었다. 이러한 전용설비에 대한 유연성을 가미한 자동차로 지향되어, 그 한 방법으로 산업용 robot가 도입되었다. 근래에 와서는 자동차제조에 있어서 새 로운 용접기술을 합리적으로 효과있게 적용하는 기술이 금후의 연구과제라 하겠다.

  • PDF

Experimental Study on Minimizing Wall Thickness Thinning for Deep Drawing of Circular Shells (원통형 딥드로잉 용기의 벽 두께 감소 최소화에 관한 실험적 연구)

  • Kim, Doo-Hwan
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.393-399
    • /
    • 1998
  • For minimizing wall thickness thinning of circular shells, a new stamping technology, the deep draw-ing process combined with ironing is approached and investigated. The design requirements for the deep drawing shells are to keep the optimum wall thickness with max. 10 percent thickness thinning of the initial blank thickness, to make uniform thickness strain distribution for the wall of circular shell and to improve the shape accuracy for the roundness and concentricity. In order to check the validity and effectiveness of proposed work, a sample process design is applied to a circular shell needed for a 4multi-stepped deep drawing. Through experiments, the variations of the thickness strain distribution in each drawing process are observed. Also a series of experiments are performed to investigate optimum process variables such as the geometry of tooling, radius and drawing rate. In particular, the advantage of current approach with ironing is shown in contrast to the conventional deep drawing process. From the results of proposed method, the optimum value of process variables are obtained, which contribute more uniform thickness strain distribution and better quality in the drawn product.

  • PDF

Robust pattern watermarking using wavelet transform and multi-weights (웨이브렛 변환과 다중 가중치를 이용한 강인한 패턴 워터마킹)

  • 김현환;김용민;김두영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3B
    • /
    • pp.557-564
    • /
    • 2000
  • This paper presents a watermarking algorithm for embedding visually recognizable pattern (Mark, Logo, Symbol, stamping or signature) into the image. first, the color image(RGB model)is transformed in YCbCr model and then the Y component is transformed into 3-level wavelet transform. Next, the values are assembled with pattern watermark. PN(pseudo noise) code at spread spectrum communication method and mutilevel watermark weights. This values are inserted into discrete wavelet domain. In our scheme, new calculating method is designed to calculate wavelet transform with integer value in considering the quantization error. and we used the color conversion with fixed-point arithmetic to be easy to make the hardware hereafter. Also, we made the new solution using mutilevel threshold to robust to common signal distortions and malicious attack, and to enhance quality of image in considering the human visual system. the experimental results showed that the proposed watermarking algorithm was superior to other similar water marking algorithm. We showed what it was robust to common signal processing and geometric transform such as brightness. contrast, filtering. scaling. JPEG lossy compression and geometric deformation.

  • PDF

Springback Reduction of Multi-step Cylindrical Cup in Spinning Process. (스피닝공정에 있어서 스프링백 억제방안)

  • Park, Joong-Eon;Lee, Woo-Young;Choi, Seogou;Kim, Seung-Soo;Na, Kyoung-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.186-191
    • /
    • 2001
  • Spinning process is a chipless metal forming method for axi-symmetric parts, which is more economical, efficient and versatile method for producing parts than the other sheet metal forming process such as stamping or deep drawing. In this study, a fundamental experiment was conducted to improve productivity with process parameters such as tool path, angle of roller holder($\alpha$), feed rate($\gamma$) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to hale an effect on spring back. The empirical results were analyzed to know how much spring back was affected by these factors. And also thickness and diameter distribution of a multistage cup obtained by spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

Mechanical Properties of Laser-Welded Multi-Material Tailor-Welded Blanks (레이저 TWB된 이종접합강의 기계적 특성)

  • Nam, Ki-Woo;Park, Sang-Hyun;Lee, Kyu-Hyun;Lee, Mun-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.857-863
    • /
    • 2012
  • In this study, tailor-welded blanks(TWB) were formed between high-strength steel(SABC1470) and cold rolled steels(SPFH590 and SPFC980) to improve passenger safety and reduce the weight of cars. Multi-material TWB specimens were highly strengthened through the heat treatment of SABC1470. The change in tensile strength caused by the stand-by time until water cooling after stamping and the deformation behavior of high-speed bending in a statically indeterminate condition such as in the center-pillar were evaluated. Multi-material TWB specimens that were heat-treated at the same temperature tended to show a decrease in tensile and yield strength, depending on the stand-by time until water cooling. On the other hand, Multi-material TWB specimens(SABC1470+SPFH590) that were heat treated at $850^{\circ}C$ showed good properties that were suitable for ensuring passenger safety in car accidents. From the viewpoint of passenger safety, it is best to use SABC1470 and SPFH590 in the upper and lower area of the center-pillar, respectively.