• Title/Summary/Keyword: Multi-Stage Drawing

Search Result 81, Processing Time 0.023 seconds

Multi-Stage forming Process Applied to Warm Drawing of Magnesium Alloy AZ31 Sheet (마그네슘 합금 AZ31 판재의 온간 드로잉에서의 다단 성형 공정 적용)

  • Kim, H.K.;Kim, G.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.242-245
    • /
    • 2007
  • In the present investigation, the multi-stage warm drawing process was applied to the magnesium alloy AZ31 sheet to examine the feasibility of multi-stage forming process as a high formability product making process. For that purpose, a multi-stage drawing die system with heating module was developed, and the AZ31 sheets of different sizes were consecutively drawn by the multi-stage drawing die. The obtained drawn cups of AZ31 showed that the multi-stage drawing provided the better formability than the single stage drawing in terms of drawing depth without cup defects such as wrinkles or fractures. The sheet formability improvement by using the multi-stage drawing die system against the single stage was also analyzed in terms of the finite element analysis of material state variables evolution.

  • PDF

Fabrication of Drawing Wire for Cold Rolling Mill using Tungsten Carbide Multi-Stage Dies (초경 다단 다이를 적용한 냉간 압조용 인발 선재 제조)

  • Park, D.H.;Hyun, K.H.;Lee, M.J.
    • Transactions of Materials Processing
    • /
    • v.29 no.2
    • /
    • pp.97-102
    • /
    • 2020
  • Wire drawing is a metalworking process used to reduce the cross-section of a wire by pulling the wire through multi-stage drawing dies. The aim of this study is to fabricate a drawing wire using 2 stage drawing process. The finite element analysis of wire drawing was conducted to validate the efficiency of the designed process and the experiment was performed to validate the designed wire drawing process using 2 stage tungsten carbide die. Dry lubricant with powder was applied for producing a wire of desired diameter. Finally, a drawing wire using 2 stage die for cold rolling mill was developed.

Multi-stage Finite Element Inverse Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio (세장비가 큰 타원형 컵 성형 공정의 다단계 유한요소 역해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.304-312
    • /
    • 2000
  • An inverse finite element approach is employed to efficiently design the optimum blank shape and intermediate shapes from the desired final shape in multi-stage elliptic cup drawing processes. The multi-stage deep-drawing process is difficult to design with the conventional finite element analysis since the process is very complicate with the conventional finite element analysis since the process is very complicated with intermediate shapes and the numerical analysis undergoes the convergence problem even with tremendous computing time. The elliptic cup drawing process needs much effort to design sine it requires full three-dimensional analysis. The inverse analysis is able to omit all complicated and tedious analysis procedures for the optimum process design. In this paper, the finite element inverse analysis provides the thickness strain distribution of each intermediate shape through the multi-stage analysis. The multi-stage analysis deals with the convergence among intermediate shapes and the corresponding sliding constraint surfaces that are described by the analytic function of merged-arc type surfaces.

  • PDF

Multi-stage Inverse Finite Element Analysis of Multi-stage Rectangular Cup Drawing Processes with Large Aspect Ratio Considering Deformation History (변형이력을 고려한 세장비가 큰 직사각컵 성형공정의 다단계 유한요소 역해석)

  • Kim S. H.;Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.94-97
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

Understanding the Effect of Friction Coefficient on Strain Distribution in Cu-0.2wt%Mg Alloy during Wire Drawing using Finite Element Analysis (유한요소해석을 이용한 인발 공정 시 Cu-0.2wt%Mg 합금의 변형률 분포에 미치는 마찰계수 영향의 이해)

  • T. H. Yoo;S. W. Baek;J. H. Kim;S. H. Choi
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.35-40
    • /
    • 2023
  • In the case of a wire with a very fine diameter during the multi-stage drawing process, the heterogeneity of the deformation in the radial direction tends to develop strongly as the amount of deformation is accumulated. It is known that the heterogeneity of deformation in the radial direction of the wire is closely related to the process parameters during the multi-stage drawing process. In this study, finite element analysis (FEA) was used to theoretically examine the effect of friction between the surface of the wire and the drawing die during the multi-stage drawing process of Cu-0.2wt%Mg alloy on the deformation heterogeneity developed in the radial direction of the wire. The distribution of effective strain, radial strain, circumferential strain, and shear strain developed in the radial direction of the wire during the multi-stage drawing process was analyzed while changing the friction coefficient, and the results were analyzed and compared for each path and position. The FEA results revealed that the shear strain developed in the radial direction of the wire during the multi-stage drawing process of Cu-0.2wt%Mg alloy showed the most non-uniform distribution and was also severely affected by the friction coefficient.

Process Design of Multi-Stage Shape Drawing Process for Cross Roller Guide (크로스 롤러 가이드 다단 형상인발 공정설계에 관한 연구)

  • Lee, Sang-Kon;Lee, Jae-Eun;Lee, Tae-Kyu;Lee, Seon-Bong;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.124-130
    • /
    • 2009
  • In the multi-stage shape drawing process, the most important aspect for the economy is the correct design of the various drawing stage. For most of the products commonly available round or square materials can be used as initial material. However, special products should be pre-rolled. This study proposes a process design method of multi-stage shape drawing process for producing cross roller guide. Firstly, a standard classification of shape drawing process is suggested based on the requirement of pre-rolling process. And a design method is proposed to design the intermediate die shape. The process design method is applied to design the multi-stage shape drawing process for producing cross roller guide. Finally, the effectiveness of the proposed design method is verified by FE-analysis and shape drawing experiment.

A Study on Cross Sectional Shape Design of Intermediate Pass in the Multi-Stage Shape Drawing (다단 이형인발공정의 중간패스 단면형상 설계에 관한 연구)

  • Lee, J.E.;Lee, T.K.;Lee, S.K.;Kim, S.M.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.283-289
    • /
    • 2009
  • The multi-stage shape drawing is used to obtain long shaped products with high levels of dimensional accuracy and quality. It is important to design the cross sectional shapes of the intermediate passes to meet the required dimensional accuracy of the final product in the multi-stage shape drawing. Until now, the cross sectional shapes of the intermediate passes have been designed by the experiences. It is still remained unsolved problem to design the cross sectional shapes of intermediate pass drawing dies in the multi-pass shape drawing. In this study, a new technique is proposed to design the cross sectional shapes of intermediate passes. The proposed method is applied to a multi-stage shape drawing for a LM-guide which is one of the representative shape drawing products. In order to verify the effectiveness of the proposed method, FE-simulation and experiments have been carried out. The dimensional accuracy of the proposed method is compared with that of the conventional shape drawing process designed by the industrial engineers.

Analysis of Rectangular Cup Drawing Processes with Large Aspect Ratio Using Multi-Stage Finite Element Inverse Analysis (다단계 유한요소 역해석을 이용한 세장비가 큰 직사작컵 성형 공정의 해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.389-395
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes with large aspect ratio, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem. as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

Dimensional Accuracy of Cylindrical Cups in Multi-Stage Drawing of Aluminum Sheet Metal (알루미늄 판재의 다단계 드로잉에 있어서 원통컵의 치수 정밀도 비교)

  • Choi, J.M.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.115-120
    • /
    • 2015
  • Deep drawing of cylindrical cups is one of the most fundamental and important processes in sheet metal forming. Circular cups are widely used in industrial fields such as automobile and electronic appliances. Some of these cups are formed by a one-stage process, others such as battery cases and beverage cans are made by a multi-stage process. In the current study the multi-stage deep drawing of aluminum sheet metal is examined. The process consists of two deep drawing operations followed by two ironing operations. The press die, which can be used for the four-stage forming process, was manufactured allowing punch and die components to be easily changed for various experiments. The rolling direction of both the sheet and the drawn cups was always positioned toward the horizontal x-direction on the die face to minimize experimental errors during the progressive forming. The dimensional accuracy of the cylindrical cups formed at each stage and the earing defect due to the anisotropy of sheet were investigated. The influence of anisotropy on the thickness distribution was also examined. Both the thickness and the outer diameter of the cups were measured and compared for each set of experimental conditions. It was found that the dimensional accuracy of cups rapidly improves by employing the ironing process and also by increasing the amount of ironing.

Multi-stage Inverse Finite Element Analysis of Rectangular Cup Drawing considering Sliding Constraint Surfaces with Arbitrary Intermediate Die Shapes (임의 곡면의 금형형상이 고려된 미끄럼 구속면을 이용한 직사각컵의 다단계 유한요소 역해석)

  • Kim S. H.;Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.158-161
    • /
    • 2000
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF