• Title/Summary/Keyword: Multi-Stage Dies

Search Result 24, Processing Time 0.023 seconds

A Study on the Drawability of Rectangular Deep Drawing of Sheet Metal using Local Heating (국부가열을 이용한 박판의 사각통 디이프 드로잉 성형에 관한 연구)

  • 박동환;김창호;강성수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.209-214
    • /
    • 1995
  • This paper describes that the effects of punch speed and temperatures of the die and the blank holder on the drawability are examined. Up to now, multi-stage of dies sets have been used generally at room temperature in deep drawing of rectangular shaped components. But using local heating, it is shown that one stage of die set was capable of deep drawing and the drawability was increased and sheet thickness of component was drawn somewhat uniformly. Rectangular deep drawing experiments on two kinds of stainless steel STS316L, STS430 of 1.0 mm thickness have been conducted using local heating. The limiting drawing height can be increased by heating the die and the blank holder up to 100 .deg. C at STS316L. Commercial lubricants hadn't an effect on drawability in rectangular deep drawing, but vinyl and teflon film had an effect on it.

  • PDF

Structural analysis of the Micro-Former based on results from the forming analysis for milli components (밀리부품 성형해석을 통한 Micro-Former의 거동해석)

  • Yoon J.H.;Huh H.;Kim S.S.;Choi T.H.;Na G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.118-121
    • /
    • 2004
  • Manufacturing process for milli components has recently gained researcher's focus with the increasing tendency toward highly integrated and micro-scaled parts for electronic devices. The milli-components cannot be formed by the conventional manufacturing process since the parts require higher dimensional accuracy than the conventional ones. In order to enhance the forming accuracy and productivity, various forming procedures proposed and studied by many researchers. In this paper, forming analysis of milli-components has been studied with a new micro-former. In modeling of progressive dies, multi-stage forming sequence has been analyzed with finite element analysis by LS-DYNA3D. The analysis proposes the sequential die and part shapes with the corresponding punch force and dimensional accuracy. The analysis also considers the effect of elastic dies on the dimensional accuracy of the formed parts. The analysis result demonstrates that the elastic analysis in the milli-forming process is indispensable fur accurate forming analysis. The analysis procedure in the paper will provide good information in design of a new micro-former and milli-component.

  • PDF

Development of Wire Temperature Prediction Method in a Continuous Dry Wire Drawing Process Using the High Carbon Steel (고탄소강의 연속 건식 신선 공정에서 선재의 온도 예측 기법 개발)

  • Kim, Yeong-Sik;Kim, Dong-Hwan;Kim, Byeong-Min;Kim, Min-An;Park, Yong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.330-337
    • /
    • 2001
  • Wire drawing process of the high carbon steel with a high speed is usually conducted at room temperature using a number of passes or reductions through consequently located dies. In multi-stage drawing process, temperature rise in each pass affects the mechanical properties of final product such as bend, twist and tensile strength. Also, this temperature rise during the deformation is the reason that the wire in drawing process is broken by the embrittlement due to rapid strain aging effect. This paper presents the estimation of the wire temperature for the multi-stage wire drawing process. Using the proposed calculation method of wire temperature, temperature rise at deformation zone as well as temperature drop in block considering the heat transfer between the block and wire were calculated. As these calculated wire temperatures were applied to the real industrial fields, it was known that the calculated results were in a good agreement with the measured wire temperature.

Mold-design Verification of Ball Housing Insert Die in Non Processing Type Multi-stage Cold Forging (다단냉간단조 비가공 타입에서 볼하우징 인서트 다이의 금형설계 검증)

  • Hwang, Won-Seok;Choi, Jong-Won;Jung, Eu-Enn;Kang, Myungchang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.8-15
    • /
    • 2021
  • Cold forging is a method in which molding is performed at room temperature. It has a high material recovery rate and dimensional precision and produces excellent surface quality, and it is mainly used for the production of bolted or housing products. The lifespan of cold forging molds is generally determined by the wear of the mold, plastic deformation of the mold, and fatigue strength. Cold forging molds are frequently damaged due to fatigue destruction rather than wear and plastic deformation in a high-temperature environment as it is molded at room temperature without preheating the raw material and mold. Based on the results analyzed through FEM, an effective mold structure design method was proposed by analyzing the changes in tensile and compressive stresses on molds according to the number of molds and reinforcement rings and comparing the product geometry and mold stress using three existing mold models.

Forging Process Analysis of the Multi-forging Die for the Unified Universal Pipe Joint of the Intermediate Shaft (인텀샤프트 일체형 유니버셜 파이프 조인트용 다단조금형의 단조공정해석)

  • Kwon, Hyuk-Hong;Moon, Kwan-Jin;Song, Seung-Eun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.33-41
    • /
    • 2010
  • This study was aimed at the design of the dies for the unified pipe joint of the intermediate shaft using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

Process Design Molding with Precision Hot Forging of One-Way Clutch Inner Race (원 웨이 클러치 이너 레이스의 정밀 열간 단조 공정설계에 관한 연구)

  • Kim, Hwa-Jeong;Jin, Chul-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.83-90
    • /
    • 2018
  • In this research, we developed a process design hot-forging technology that precisely forms an inner race. The inner race transmits power to a one-way clutch of an automatic transmission and minimizes the CNC machining allowance. For a multi-stage hollow shape (inner race), we proposed several shapes of blocker and finisher for the precision hot-forging process and analyzed the forging process using DEFORM. The hot-forging process was optimized for several parameters, such as metal flow pattern, forging defect, and forming load. Blockers and finisher dies in the hot-forging process were designed to select optimal shapes from finite element analysis, and experiments were conducted to optimize the hot-forging process.

A Study on Improving the Precision of Quantitative Prediction of Cold Forging Die Life Cycle Through Real Time Forging Load Measurement (실시간 성형하중 계측을 통한 냉간단조 금형수명 정량예측 정밀도 향상 연구)

  • Seo, Y.H.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.172-178
    • /
    • 2021
  • The cold forging process induces material deformation in an enclosed space, generating a very high forging load. Therefore, it is mainly designed as a multi-stage process, and fatigue failure occurs in forging die due to cyclic load. Studies have been conducted previously to quantitatively predict the fatigue limit of cold forging dies, however, there was a limit to field application due to the large error range and the need for expert intervention. To solve this problem, we conducted a study on the introduction of a real-time forging load measurement technology and an automated system for quantitative prediction of die life cycle. As a result, it was possible to reduce the error range of the quantitative prediction of die life cycle to within ±7%, and it became possible to use the die life cycle calculation algorithm into an automated system.

Multi-stage forming analysis of milli component for improvement of forming accuracy (밀리부품 성형 정밀도 향상을 위한 다단계 미세성형 해석)

  • Yoon, J.H.;Huh, H.;Kim, S.S.;Choi, T.H.;Na, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.97-100
    • /
    • 2003
  • Globally, the various machine components, as in electronics and communications, are demanded to being high-performance and micro-scale with abrupt development of the fields of computers, mobile communications. As this current tendency, production of the parts that must have high accuracy, so called milli-structure, are accomplished by the method of top-down, differently as in the techniques of MEMS, NANO. But, in the case of milli-structure, production procedure is highly costs, difficult and demands more accurate dimension than the conservative forming, processing technique. In this paper, forming analysis of the micro-former as the milli-structure are performed and then calculate the punch force etc. This information calculated is applied to decide the forming capacity of micro-former and design the process of forming stage, dimension of dies in another forming bodies. And, for the better precise forming analysis, elasto-plastic analysis is to be performed, then the consideration about effect of elastic recovery when punch and die are unloaded, have to be discussed in change of dimensions.

  • PDF

A Study on the Cold Forging Development of Guide Valve for the Fuel Pressure Regulator (연료 압력 조절기용 가이드 밸브의 냉간 단조 개발에 관한 연구)

  • Song, Seung-Eun;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.331-336
    • /
    • 2012
  • This study was aimed at the design of the dies for the guide valve for the fuel pressure regulator using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'Eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.

Finite Element Analysis on the Cold Forging Process of the Unified Universal Shaft Joint for the Automobile (자동차용 일체형 유니버셜 샤프트 조인트의 냉간단조 공정 유한요소해석)

  • Kwon, Hyuk-Hong;Song, Seung-Eun;Kim, Oh-Seung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.582-588
    • /
    • 2011
  • This study was aimed at the design of the dies for the unified shaft joint using the computer simulation to shorten the period of production, on the basis of the process planning which was designed by the field experts. In the computer simulation, 'Deform-3d' and 'Eesy-DieOpt' have been used, which are the commercial process analysis and die design program. Through the process analysis, we could know the propriety of the forming process, the inner pressure of the die and the suitable fitting pressure between the insert and the sleeve which was not showing any positive tangential stresses in the insert. Through the simulation of die design, we could know the number of the stress ring, the diameter ratios, the stresses of the die, the shrink fitting tolerance and temperature in the condition of the already determined maximum outer die diameter of the multi-stage former. The validity of the die design using the computer simulation was analyzed by the experiments and the results were satisfactory. As the results of this study, the new and easy die design system for multi-forging has been developed.