• Title/Summary/Keyword: Multi-Stage Axial Compressor

Search Result 22, Processing Time 0.023 seconds

Investigation of the High Cycle Fatigue Crack of the Gas Turbine Compressor Blade Using Finite Element Analysis (유한요소해석을 이용한 가스터빈 압축기 블레이드 피로균열 해석)

  • Yun, Wan-No;Kim, Jun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.107-112
    • /
    • 2010
  • A gas turbine consists of an upstream compressor and a downstream turbine with a combustion chamber, and also the compressor and the turbine are generally coupled using a single shaft. Large scale gas turbine compressor is designed as multi-stage axial flow and the blade is fan-type which is thick and wide. Recently radial cracking happens occasionally at the compressor blade tip of large scale gas turbine. So, FEM was performed on the compressor blade and vibration modes and dynamic stresses were analyzed. According to the analysis, 9th natural frequency mode of the blade, which is 2 strip mode, is near the vane passing frequency by the vane located at the upstream of the blade.

Off-Design Performance Prediction of an Axial Flow Compressor Stage Using Simple Loss Correlations (간단한 손실모델을 이용한 단단축류압축기 탈설계점 성능예측)

  • 김병남;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3357-3368
    • /
    • 1994
  • Total pressure losses required to calculate the total-to-total efficiency are estimated by integrating empirical loss coefficients of four loss mechanisms along the mean-line of blades as follows; blade profile loss, secondary flow loss, end wall loss and tip clearance loss. The off-design points are obtained on the basis of Howell's off-design performance of a compressor cascade. Also, inlet-outlet air angles and camber angle are obtained from semi-empirical relations of transonic airfoils' minimum loss incidence and deviation angles. And nominal point is replaced by the design point. It is concluded that relatively simple loss models and Howell's off-design data permit us to calculate the off-design performance with satisfactory accuracy. And this method can be easily extended for off-design performance prediction of multi-stage compressors.