• Title/Summary/Keyword: Multi-Span

Search Result 381, Processing Time 0.025 seconds

Case Studies of Meteorological Disasters and Structural Safety Test of Ginseng Houses (인삼 제배 시설의 기상재해 사례 및 구조 안전성 검토)

  • Nam, Sang-Woon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.339-342
    • /
    • 2003
  • According to the results of structural safety analysis, allowable safe snow depth for type B(wood frame with single span) was 25.9cm, and those for type A(wood frame with multi span) and type C and D (steel frame with multi span) were 17.6cm, 25.8cm, and 20.0cm respectively. An experiential example study on meteorological disasters indicated that a strong wind damage was experienced once every 20 years, and a heavy snow damage once every 9.5 years. The most serious disaster was a heavy snow and it was found that a half break or complete collapse of structures were experienced by about 70% of farmhouses.

  • PDF

An Experimental Study for Mechanical Behavior of Multi-Segment Girder (분리형 거더의 역학적 거동 특성에 관한 실험)

  • 서봉원;김광수;박선규;김수만;이종은
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.186-189
    • /
    • 2003
  • Precast Segmental method was developed in germany 1950s. This method has been adoptted in long span girder mainly owing to easy construction effect. But, so far, The limit exists that this method is constructed in a portion of span and hard conveyance and foundation. This study was performed to analysis behavior difference of two rectanglar section girder, spliced girder that was jointed 5-sliced 0.8m segment and monolithic girder that was produced in one body 4m span

  • PDF

Study on economic performances of multi-span suspension bridges part 1: simple estimation formulas

  • Zhang, Li-Wen;Xiao, Ru-Cheng;Sun, Bin;Jiang, Yang;Zhang, Xue-Yi;Zhuang, Dong-Li;Zhou, Yun-Gang;Tu, Xue
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.265-286
    • /
    • 2013
  • A study on economic performances of consecutive multi-span suspension bridges is carried out. In this part of the study, material amount and structural cost estimation formulas of the bridges is derived based on the structural ultimate carrying capacity. The bridge cost includes the part of superstructure and the part of substructure. Three types of bridge foundations, bored piles, concrete caissons and floating foundations, are considered in substructure. These formulas are to be used for the parametric study of the bridge cost in order to define its more economical layout under different conditions in the part two of the study.

Multiscale features and information extraction of online strain for long-span bridges

  • Wu, Baijian;Li, Zhaoxia;Chan, Tommy H.T.;Wang, Ying
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.679-697
    • /
    • 2014
  • The strain data acquired from structural health monitoring (SHM) systems play an important role in the state monitoring and damage identification of bridges. Due to the environmental complexity of civil structures, a better understanding of the actual strain data will help filling the gap between theoretical/laboratorial results and practical application. In the study, the multi-scale features of strain response are first revealed after abundant investigations on the actual data from two typical long-span bridges. Results show that, strain types at the three typical temporal scales of $10^5$, $10^2$ and $10^0$ sec are caused by temperature change, trains and heavy trucks, and have their respective cut-off frequency in the order of $10^{-2}$, $10^{-1}$ and $10^0$ Hz. Multi-resolution analysis and wavelet shrinkage are applied for separating and extracting these strain types. During the above process, two methods for determining thresholds are introduced. The excellent ability of wavelet transform on simultaneously time-frequency analysis leads to an effective information extraction. After extraction, the strain data will be compressed at an attractive ratio. This research may contribute to a further understanding of actual strain data of long-span bridges; also, the proposed extracting methodology is applicable on actual SHM systems.

Applicability of Improved Modal Pushover Analysis of Multi-Span Bridges Under Earthquake Load (다경간 연속 교량의 내진성능 평가를 위한 개선된 모드별 비탄성 정적해석방법의 응용성 연구)

  • Kwak, Hyo-Gyoung;Shin, Dong-Kyu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.795-800
    • /
    • 2007
  • In the previous study, a simple but effective analysis procedure, named as an Improved Modal Pushover Analysis (IMPA) was proposed to estimates the seismic capacities of multi-span continuous bridge structures, on the basis of the modal pushover analysis which considers all the dynamic modes of a structure. Differently from other previous studies, IMPA maintains the simplicity of the capacity-demand curve method and also gives a better estimation of the maximum dynamic response of a structure. Nevertheless, its applicability has never been approved for multi-span continuous bridges with large differences in the length of their adjacent piers. This paper, accordingly, concentrates on a parametric study to verify the efficiency and limitation in application of IMPA through a correlation study between various analytical models including the Equivalent Single Degree Of Freedom (ESDOF) and Modal Pushover Analysis (MPA) usually used in the seismic design of structures. Based on the obtained numerical results, this paper introduces a practical guidance and/or limitation for using IMPA to predict the seismic response of a bridge effectively.

  • PDF

An Experimental Study for Deriving Design Factors of Snow Removal Machines for Multi-span Greenhouse (연동온실 곡부 제설장치의 설계인자 도출을 위한 실험적 연구)

  • Song, Hosung;Kim, Yu Yong;Yun, Nam Kyu;Lim, Seong Yoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.6
    • /
    • pp.131-140
    • /
    • 2015
  • This paper presents overall procedure by experimental study in order to deriving design factors of snow removal machine on roof of multi-span greenhouse. For the purpose of the testing, the scale model of the machine was made in the form to drive above the monorail. The test was performed in order to calculating friction coefficient of the machine and shear coefficient between sliced horizontal section of snow at constant temperature and humidity room in National Academic of Agricultural Science. As a result of the laboratory test, shear coefficient between sliced horizontal section of snow were calculated 1.60~2.37. Further investigation, we will study to derive the relationship between the real and scaled model through the field test.

Evaluation of multi-lane transverse reduction factor under random vehicle load

  • Yang, Xiaoyan;Gong, Jinxin;Xu, Bohan;Zhu, Jichao
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.725-736
    • /
    • 2017
  • This paper presents the two-, three-, and four-lane transverse reduction factor based on FEA method, probability theory, and the recently actual traffic flow data. A total of 72 composite girder bridges with various spans, number of lanes, loading mode, and bridge type are analyzed with time-varying static load FEA method by ANSYS, and the probability models of vehicle load effects at arbitrary-time point are developed. Based on these probability models, in accordance to the principle of the same exceeding probability, the multi-lane transverse reduction factor of these composite girder bridges and the relationship between the multi-lane transverse reduction factor and the span of bridge are determined. Finally, the multi-lane transverse reduction factor obtained is compared with those from AASHTO LRFD, BS5400, JTG D60 or Eurocode. The results show that the vehicle load effect at arbitrary-time point follows lognormal distribution. The two-, three-, and four-lane transverse reduction factors calculated by using FEA method and probability respectively range between 0.781 and 1.027, 0.616 and 0.795, 0.468 and 0.645. Furthermore, a correlation between the FEA and AASHTO LRFD, BS5400, JTG D60 or Eurocode transverse reduction factors is made for composite girder bridges. For the two-, three-, and four-lane bridge cases, the Eurocode code underestimated the FEA transverse reduction factors by 27%, 25% and 13%, respectively. This underestimation is more pronounced in short-span bridges. The AASHTO LRFD, BS5400 and JTG D60 codes overestimated the FEA transverse reduction factors. The FEA results highlight the importance of considering span length in determining the multi-lane transverse reduction factors when designing two-lane or more composite girder bridges. This paper will assist bridge engineers in quantifying the adjustment factors used in analyzing and designing multi-lane composite girder bridges.

A Field Survey on the Structure and Maintenance Status of Pipe Framed Greenhouses (파이프 골조 온실의 구조 및 유지관리실태 조사분석)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.106-114
    • /
    • 2000
  • An investigation was conducted to get the basic data for establishing maintenance strategy of pipe framed greenhouses. The contents of the investigation consisted of actual state of structures, maintenance status, meteorological disaster, and corrosion characteristics of pipe framework in greenhouses. the number of greenhouses investigated was 108 in total. Most multi-span greenhouses had narrower width and lower height than the standared 1-2W greenhouse, and most of single-span greenhouses were tunnel type. In multi-span greenhouses, the size and interval of frameworks such as rafter, purline, column , and cross beam were mostly suitable, but frameworks of single-span greenhouses were mostly insufficient. After about 7 years in grounds, 8 years in joints, 10 years in bending parts. and 13 years in columns. pipe surface was mostly rusted. Most weak parts in corrosion were pipes in contact with the ground, joints, roll-up shaft pipes, and pipes close to the gutter. Almost all of the greenhouse farmers didn't pay any attention to maintenance affair in a regular interval for pipe framed grenhouses. Many greenhouses have experienced the meteorologicla diaster such as uplift of foundation, partial or complete failure by the hyphoon and/or high winds.

  • PDF

Analysis of effects of shrinkage of concrete added to widen RC girder bridge

  • Madaj, Arkadiusz;Siekierski, Wojciech
    • Computers and Concrete
    • /
    • v.23 no.5
    • /
    • pp.329-334
    • /
    • 2019
  • Traffic flow capacity of some old road bridges is insufficient due to limited deck width. In such cases bridge deck widening is a common solution. For multi-girder reinforced concrete (RC) bridges it is possible to add steel-concrete composite girders as the new outermost girders. The deck widening may be combined with bridge strengthening thanks to thickening of the existing deck slab. Joint action of the existing and the added parts of such bridge span must be ensured. It refers especially to the horizontal plane at the interface of the existing slab and the added concrete layer as well as to the vertical planes at the external surfaces of the initially outermost girders where the added girders are connected to the existing bridge span. Since the distribution of the added concrete is non-uniform in the span cross-section the structure is particularly sensitive to the added concrete shrinkage. The shrinkage induces shear forces in the aforementioned planes. Widening of a 12 m long RC multi-girder bridge span is numerically analysed to assess the influence of the added concrete shrinkage. The analysis results show that: a) in the vertical plane of the connection of the added and the existing deck slab the longitudinal shear due to the shrinkage of the added concrete is comparable with the effect of live load, b) it is necessary to provide appropriate longitudinal reinforcement in the deck slab over the added girders due to tension induced by the shrinkage of the added concrete.

An energy-based vibration model for beam bridges with multiple constraints

  • Huang, Shiping;Zhang, Huijian;Chen, Piaohua;Zhu, Yazhi;Zuazua, Enrique
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.41-53
    • /
    • 2022
  • We developed an accurate and simple vibration model to calculate the natural frequencies and their corresponding vibration modes for multi-span beam bridges with non-uniform cross-sections. A closed set of characteristic functions of a single-span beam was used to construct the vibration modes of the multi-span bridges, which were considered single-span beams with multiple constraints. To simplify the boundary conditions, the restraints were converted into spring constraints. Then the functional of the total energy has the same form as the penalty method. Compared to the conventional penalty method, the penalty coefficients in the proposed approach can be calculated directly, which can avoid the iteration process and convergence problem. The natural frequencies and corresponding vibration modes were obtained via the minimum total potential energy principle. By using the symmetry of the eigenfunctions or structure, the matrix size can be further reduced, which increases the computational efficiency of the proposed model. The accuracy and efficiency of the proposed approach were validated by the finite element method.