• Title/Summary/Keyword: Multi-Sensor Model

Search Result 309, Processing Time 0.026 seconds

Simultaneous Localization and Mobile Robot Navigation using a Sensor Network

  • Jin Tae-Seok;Bashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.161-166
    • /
    • 2006
  • Localization of mobile agent within a sensing network is a fundamental requirement for many applications, using networked navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, This paper describes a networked sensor-based navigation method in an indoor environment for an autonomous mobile robot which can navigate and avoid obstacle. In this method, the self-localization of the robot is done with a model-based vision system using networked sensors, and nonstop navigation is realized by a Kalman filter-based STSF(Space and Time Sensor Fusion) method. Stationary obstacles and moving obstacles are avoided with networked sensor data such as CCD camera and sonar ring. We will report on experiments in a hallway using the Pioneer-DX robot. In addition to that, the localization has inevitable uncertainties in the features and in the robot position estimation. Kalman filter scheme is used for the estimation of the mobile robot localization. And Extensive experiments with a robot and a sensor network confirm the validity of the approach.

Registration of Aerial Image with Lines using RANSAC Algorithm

  • Ahn, Y.;Shin, S.;Schenk, T.;Cho, W.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.529-536
    • /
    • 2007
  • Registration between image and object space is a fundamental step in photogrammetry and computer vision. Along with rapid development of sensors - multi/hyper spectral sensor, laser scanning sensor, radar sensor etc., the needs for registration between different sensors are ever increasing. There are two important considerations on different sensor registration. They are sensor invariant feature extraction and correspondence between them. Since point to point correspondence does not exist in image and laser scanning data, it is necessary to have higher entities for extraction and correspondence. This leads to modify first, existing mathematical and geometrical model which was suitable for point measurement to line measurements, second, matching scheme. In this research, linear feature is selected for sensor invariant features and matching entity. Linear features are incorporated into mathematical equation in the form of extended collinearity equation for registration problem known as photo resection which calculates exterior orientation parameters. The other emphasis is on the scheme of finding matched entities in the aide of RANSAC (RANdom SAmple Consensus) in the absence of correspondences. To relieve computational load which is a common problem in sampling theorem, deterministic sampling technique and selecting 4 line features from 4 sectors are applied.

Optical Filter Design for Fluorescence Technique Based Phycocyanin Measurement Sensor Used In Water Treatment Plants

  • Mariappan, Vinayagam;Lee, Sung Hwa;Yang, Seungyoun;Kim, Jintae;Lee, Minwoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.45-50
    • /
    • 2018
  • Recently the water management department advised the water treatment industry to focus on deploy the chemical free and the environmentally responsible process to adopt on water treatment plants in every country. In this objective, water treatment process started using ultrasonic based phycocyanin extraction with fluorescence measurement techniques to detect the change in the yield of phycocyanin. This paper propose the design of optical filter model for fluorescence technique based immersive optical phycocyanin measurement sensor design. The proposed design uses the multi-wavelength sensor module for irradiating part, and this plays a role of removing a wavelength band other than 590 ~ 620 nm. The preliminary study on immersed phycocyanin sensor, the fluorescence value of picocyanin according to the ultrasonic intensity, treatment time and number of cells was measured using JM phycocyanin module to emulate the proposed design, and were compared performance of the proposed sensor emulation. In this design, the phycocyanin fluorescence value increased about 2.1 ~ 4.7 times as the ultrasonic treatment time increased as compared with JM phycocyanin module, and the phycocyanin fluorescence value within the analysis range was obtained by ultrasonic treatment within one minute.

The Optimal Grasp Planning by Using a 3-D Computer Vision Technique (3차원 영상처리 기술을 이용한 Grasp planning의 최적화)

  • 이현기;김성환;최상균;이상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.54-64
    • /
    • 2002
  • This paper deals with the problem of synthesis of stable and optimal grasps with unknown objects by 3-finger hand. Previous robot grasp research has mainly analyzed with either unknown objects 2-dimensionally by vision sensor or known objects, such as cylindrical objects, 3-dimensionally. As extending the previous work, in this study we propose an algorithm to analyze grasp of unknown objects 3-dimensionally by using vision sensor. This is archived by two steps. The first step is to make a 3-dimensional geometrical model for unknown objects by using stereo matching. The second step is to find the optimal grasping points. In this step, we choose the 3-finger hand which has the characteristic of multi-finger hand and is easy to model. To find the optimal grasping points, genetic algorithm is employed and objective function minimizes the admissible force of finger tip applied to the objects. The algorithm is verified by computer simulation by which optimal grasping points of known objects with different angle are checked.

Specialized Product-Line Development Methodology for Developing the Embedded System

  • Hong Ki-Sam;Yoon Hee-Byung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.268-273
    • /
    • 2005
  • We propose the specialized product-line development methodology for developing the embedded system of an MSDFS (Multi Sensor Data Fusion System : called MSDFS). The product-line methodology provides a simultaneous design between software and hardware, high level reusability. However this is insufficient in requirement analysis stage due to be focused on software architecture, detailed design and code. Thus we apply the business model based on IDEF0 technique to traditional methodology. In this paper, we describe the processes of developing Core-Asset, which are requirement analysis, feature modeling, validation. The proposed model gives the efficient result for eliciting features, and ensures the high level reusability of modules performing on embedded system.

Active Vibration Control of Cantilever Plate Equipped with MFC Actuators (MFC 액츄에이터가 부착된 외팔 평판의 능동 진동 제어)

  • Kwak, Moon K.;Yang, Dong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.533-534
    • /
    • 2013
  • This paper is concerned with the active vibration control of rectangular plate equipped with MFC actuators. To this end, the dynamic model of the rectangular plate bonded with MFC sensors and actuators was derived by means of the Rayleigh-Ritz method. The MFC actuator and sensor were modeled based on the pin-force assumption. The theoretical model was then validated experimentally. The multiinput and multi-output (MIMO) Positive Position Feedback (PPF) controller was designed based on the natural mode shapes and implemented using dSpace system and Simulink. The proposed control algorithm was applied to the cantilever plate having two MFC wafers having both sensor and actuator. Numerical and experimental investigations were carried out. Both theoretical and experimental result shows that the proposed control algorithm can effectively suppress vibrations of cantilever plate.

  • PDF

A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images (다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구)

  • Kang, Wonbin;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1505-1514
    • /
    • 2022
  • Image matching is a crucial preprocessing step for effective utilization of multi-temporal and multi-sensor very high resolution (VHR) satellite images. Deep learning (DL) method which is attracting widespread interest has proven to be an efficient approach to measure the similarity between image pairs in quick and accurate manner by extracting complex and detailed features from satellite images. However, Image matching of VHR satellite images remains challenging due to limitations of DL models in which the results are depending on the quantity and quality of training dataset, as well as the difficulty of creating training dataset with VHR satellite images. Therefore, this study examines the feasibility of DL-based method in matching pair extraction which is the most time-consuming process during image registration. This paper also aims to analyze factors that affect the accuracy based on the configuration of training dataset, when developing training dataset from existing multi-sensor VHR image database with bias for DL-based image matching. For this purpose, the generated training dataset were composed of correct matching pairs and incorrect matching pairs by assigning true and false labels to image pairs extracted using a grid-based Scale Invariant Feature Transform (SIFT) algorithm for a total of 12 multi-temporal and multi-sensor VHR images. The Siamese convolutional neural network (SCNN), proposed for matching pair extraction on constructed training dataset, proceeds with model learning and measures similarities by passing two images in parallel to the two identical convolutional neural network structures. The results from this study confirm that data acquired from VHR satellite image database can be used as DL training dataset and indicate the potential to improve efficiency of the matching process by appropriate configuration of multi-sensor images. DL-based image matching techniques using multi-sensor VHR satellite images are expected to replace existing manual-based feature extraction methods based on its stable performance, thus further develop into an integrated DL-based image registration framework.

The Performance Analysis of IMM-MPDA Filter in Multi-lag Out of Sequence Measurement Environment (Multi-lag Out of Sequence Measurement 환경에서의 IMM-MPDA 필터 성능 분석)

  • Seo, Il-Hwan;Song, Taek-Lyul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1476-1483
    • /
    • 2007
  • In a multi-sensor target tracking systems, the local sensors have the role of tracking the target and transferring the measurements to the fusion center. The measurements from the same target can arrive out of sequence called, the out-of-sequence measurements(OOSMs). The OOSM can arise in a form of single-lag or multi-lag throughout the transfer at the fusion center. The recursive retrodiction step was proposed to update the current state estimates with the multi-lag OOSM from the several previous papers. The real world has the possible situations that the maneuvering target informations can arrive at the fusion center with the random clutter in the possible OOSMs. In this paper, we incorporate the IMM-MPDA(Interacting Multiple Model - Most Probable Data Association) into the multi-lag OOSM update. The performance of the IMM-MPDA filter with multi-lag OOSM update is analyzed for the various clutter densities, OOSM lag numbers, and target maneuvering indexes. Simulation results show that IMM-MPDA is sufficient to be used in out of sequence environment and it is necessary to correct the current state estimates with OOSM except a very old OOSM.

Wireless operational modal analysis of a multi-span prestressed concrete bridge for structural identification

  • Whelan, Matthew J.;Gangone, Michael V.;Janoyan, Kerop D.;Hoult, Neil A.;Middleton, Campbell R.;Soga, Kenichi
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.579-593
    • /
    • 2010
  • Low-power radio frequency (RF) chip transceiver technology and the associated structural health monitoring platforms have matured recently to enable high-rate, lossless transmission of measurement data across large-scale sensor networks. The intrinsic value of these advanced capabilities is the allowance for high-quality, rapid operational modal analysis of in-service structures using distributed accelerometers to experimentally characterize the dynamic response. From the analysis afforded through these dynamic data sets, structural identification techniques can then be utilized to develop a well calibrated finite element (FE) model of the structure for baseline development, extended analytical structural evaluation, and load response assessment. This paper presents a case study in which operational modal analysis is performed on a three-span prestressed reinforced concrete bridge using a wireless sensor network. The low-power wireless platform deployed supported a high-rate, lossless transmission protocol enabling real-time remote acquisition of the vibration response as recorded by twenty-nine accelerometers at a 256 Sps sampling rate. Several instrumentation layouts were utilized to assess the global multi-span response using a stationary sensor array as well as the spatially refined response of a single span using roving sensors and reference-based techniques. Subsequent structural identification using FE modeling and iterative updating through comparison with the experimental analysis is then documented to demonstrate the inherent value in dynamic response measurement across structural systems using high-rate wireless sensor networks.

Multi-Channel Pipelining for Energy Efficiency and Delay Reduction in Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율성과 지연 감소를 위한 다중 채널 파리프라인 기법)

  • Lee, Yoh-Han;Kim, Daeyoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.11-18
    • /
    • 2014
  • Most of the energy efficient MAC protocols for wireless sensor networks (WSNs) are based on duty cycling in a single channel and show competitive performances in a small number of traffic flows; however, under concurrent multiple flows, they result in significant performance degradation due to contention and collision. We propose a multi-channel pipelining (MCP) method for convergecast WSN in order to address these problems. In MCP, a staggered dynamic phase shift (SDPS) algorithms devised to minimize end-to-end latency by dynamically staggering wake-up schedule of nodes on a multi-hop path. Also, a phase-locking identification (PLI) algorithm is proposed to optimize energy efficiency. Based on these algorithms, multiple flows can be dynamically pipelined in one of multiple channels and successively handled by sink switched to each channel. We present an analytical model to compute the duty cycle and the latency of MCP and validate the model by simulation. Simulation evaluation shows that our proposal is superior to existing protocols: X-MAC and DPS-MAC in terms of duty cycle, end-to-end latency, delivery ratio, and aggregate throughput.