• Title/Summary/Keyword: Multi-Sensor

Search Result 2,020, Processing Time 0.027 seconds

Recent Progress of Ti3Ci2Tix MXene Electrode Based Self-Healing Application (Ti3Ci2Tix MXene 기반 전극 소재의 자가 치유 적용 기술 개발 동향)

  • Jun Sang Choi;Seung-Boo Jung;Jong-Woong Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.20-34
    • /
    • 2023
  • Single or multi-layered two-dimensional (2D) materials, with thicknesses in the order of a few nanometers, have garnered substantial attention across diverse research domains owing to their distinct properties, including electrical conductivity, flexibility, and optical transparency. These materials are frequently subjected to repetitive mechanical actions in applications like electronic skin (E-Skin) and smart textiles. Moreover, they are often exposed to external factors like temperature, humidity, and pressure, which can lead to a deterioration in component durability and lifespan. Consequently, significant research efforts are directed towards developing self-healing properties in these components. Notably, recent investigations have revealed promising outcomes in the field of self-healing composite materials, with Ti3Ci2Tix MXene being a prominent component among the myriad of available 2D materials. In this paper, we aim to introduce various synthesis methods and characteristics of Ti3Ci2Tix MXene, followed by an exploration of self-healing application technologies based on Ti3Ci2Tix MXene.

Development of Evaluation Indicators for Optimizing Mixed Traffic Flow Using Complexed Multi-Criteria Decision Approaches (다기준 복합 가중치 결정 기반 혼재 교통류 최적화 평가지표 개발)

  • Donghyeok Park;Nuri Park;Donghee Oh;Juneyoung Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.157-172
    • /
    • 2024
  • Autonomous driving technology, when commercialized, has the potential to improve the safety, mobility, and environmental performance of transportation networks. However, safe autonomous driving may be hindered by poor sensor performance and limitations in long-distance detection. Therefore, cooperative autonomous driving that can supplement information collected from surrounding vehicles and infrastructure is essential. In addition, since HDVs, AVs, and CAVs have different ranges of perceivable information and different response protocols, countermeasures are needed for mixed traffic that occur during the transition period of autonomous driving technology. There is a lack of research on traffic flow optimization that considers the penetration rate of autonomous vehicles and the different characteristics of each road segment. The objective of this study is to develop weights based on safety, operational, and environmental factors for each infrastructure control use case and autonomous vehicle MPR. To develop an integrated evaluation index, infra-guidance AHP and hybrid AHP weights were combined. Based on the results of this study, it can be used to give right of way to each vehicle to optimize mixed traffic.

Study on the Expression of Sensory Visualization through AR Display Connection - Focusing on Eye Tracking (AR 디스플레이 연결을 통한 감각시각화에 대한 표현 검토)

  • Ma Xiaoyu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.357-363
    • /
    • 2024
  • As AR display virtual technology enters public learning life extensively, the way in which reality and virtual connection are connected is also changing. The purpose of this paper is to study the expression between the 3D connection sensory information visualization experience and virtual reality enhancement through the visual direction sensory information visualization experience of the plane. It is analyzed by examining the basic setting method compared to the current application of AR display and flat visualization cases. The scope of this paper is to enable users to have a better experience through the relationship with sensory visualization, centering on eye tracking technology in the four categories of AR display connection design: gesture connection, eye tracking, voice connection, and sensor. Focusing on eye tracking technology through AR display interaction and current application and comparative analysis of flat visualization cases, the geometric consistency of visual figures, light and color consistency, combination of multi-sensory interaction methods, rational content display, and smart push presented sensory visualization in virtual reality more realistically and conveniently, providing a simple and convenient sensory visualization experience to the audience.

The Study of Land Surface Change Detection Using Long-Term SPOT/VEGETATION (장기간 SPOT/VEGETATION 정규화 식생지수를 이용한 지면 변화 탐지 개선에 관한 연구)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, In-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.111-124
    • /
    • 2010
  • To monitor the environment of land surface change is considered as an important research field since those parameters are related with land use, climate change, meteorological study, agriculture modulation, surface energy balance, and surface environment system. For the change detection, many different methods have been presented for distributing more detailed information with various tools from ground based measurement to satellite multi-spectral sensor. Recently, using high resolution satellite data is considered the most efficient way to monitor extensive land environmental system especially for higher spatial and temporal resolution. In this study, we use two different spatial resolution satellites; the one is SPOT/VEGETATION with 1 km spatial resolution to detect coarse resolution of the area change and determine objective threshold. The other is Landsat satellite having high resolution to figure out detailed land environmental change. According to their spatial resolution, they show different observation characteristics such as repeat cycle, and the global coverage. By correlating two kinds of satellites, we can detect land surface change from mid resolution to high resolution. The K-mean clustering algorithm is applied to detect changed area with two different temporal images. When using solar spectral band, there are complicate surface reflectance scattering characteristics which make surface change detection difficult. That effect would be leading serious problems when interpreting surface characteristics. For example, in spite of constant their own surface reflectance value, it could be changed according to solar, and sensor relative observation location. To reduce those affects, in this study, long-term Normalized Difference Vegetation Index (NDVI) with solar spectral channels performed for atmospheric and bi-directional correction from SPOT/VEGETATION data are utilized to offer objective threshold value for detecting land surface change, since that NDVI has less sensitivity for solar geometry than solar channel. The surface change detection based on long-term NDVI shows improved results than when only using Landsat.

Enhancement of Inter-Image Statistical Correlation for Accurate Multi-Sensor Image Registration (정밀한 다중센서 영상정합을 위한 통계적 상관성의 증대기법)

  • Kim, Kyoung-Soo;Lee, Jin-Hak;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.1-12
    • /
    • 2005
  • Image registration is a process to establish the spatial correspondence between images of the same scene, which are acquired at different view points, at different times, or by different sensors. This paper presents a new algorithm for robust registration of the images acquired by multiple sensors having different modalities; the EO (electro-optic) and IR(infrared) ones in the paper. The two feature-based and intensity-based approaches are usually possible for image registration. In the former selection of accurate common features is crucial for high performance, but features in the EO image are often not the same as those in the R image. Hence, this approach is inadequate to register the E0/IR images. In the latter normalized mutual Information (nHr) has been widely used as a similarity measure due to its high accuracy and robustness, and NMI-based image registration methods assume that statistical correlation between two images should be global. Unfortunately, since we find out that EO and IR images don't often satisfy this assumption, registration accuracy is not high enough to apply to some applications. In this paper, we propose a two-stage NMI-based registration method based on the analysis of statistical correlation between E0/1R images. In the first stage, for robust registration, we propose two preprocessing schemes: extraction of statistically correlated regions (ESCR) and enhancement of statistical correlation by filtering (ESCF). For each image, ESCR automatically extracts the regions that are highly correlated to the corresponding regions in the other image. And ESCF adaptively filters out each image to enhance statistical correlation between them. In the second stage, two output images are registered by using NMI-based algorithm. The proposed method provides prospective results for various E0/1R sensor image pairs in terms of accuracy, robustness, and speed.

Strength Evaluation of Sin91e-Radius Total Knee Replacement (TKR) (인공무릎관절의 단축법위 회전시 근력정가)

  • Wan, Jin-Young;Sub, Kwak-Yi
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.484-489
    • /
    • 2004
  • Artificial joint replacement is one of the major surgical advances of the 21th century. The primary purpose of a TKA (Total Knee Arthroplasty) is to restore normal knee Auction. Therefore, ideally, a TKA should: (a) maintain the natural leverage of the knee joint muscles to ensure generating adequate knee muscle moments to accomplish daily tasks such as rising from a chair or climbing stairs;(b) allow the same range of motion as an complete knee; and (c) provide adequate knee joint stability. Four individuals (2 peoples after surgery one year and 2 peoples after surgery three years) participated in this study. All they were prescreened for health and functional status by the same surgeon who performed the operations. Two days of accommodation practice occurred prior to the actual strength testing. The isometric strength (KIN-COM III) of the quadriceps and hamstring were measured at 60$^\circ$ and 30$^\circ$ of knee flexion, respectively. During isokinetic concentric testing, the range of motion was between 10$^\circ$ to 80$^\circ$ of knee flexion (stand-to-sit) and extension (sit-to-stand). for a given test, the trial exhibiting maximum torque was analyzed. A 16-channel MYOPACTM EMG system (Run Technologies, Inc.) was used to collect the differential input surface electromyographic (EMG) signals of the vastus medialis (VM), vastus lateralis(VL), rectus femoris (RF) during sit-to-stand and stand-to-sit tests. Disposable electrodes (Blue SensorTM, Medicotest, Inc.) were used to collect the EMG signals. The results were as follows; 1. Less maximum concentric (16% and 21% less for 1 yew man and 3 years mm, respectively) and isometric (12% and 29%, respectively) quadriceps torque for both participants. 2.14% less maximum hamstrings concentric torque for 1 year man but 16% greater torque for 3 years mm. However, 1 year man had similar hamstring isometric peak torque for both knees. 3. Less quadriceps co-contraction by 1 year man except for the VM at 10$^\circ$-20$^\circ$ and 30$^\circ$-50$^\circ$ range of knee flexion.

Object-based Building Change Detection Using Azimuth and Elevation Angles of Sun and Platform in the Multi-sensor Images (태양과 플랫폼의 방위각 및 고도각을 이용한 이종 센서 영상에서의 객체기반 건물 변화탐지)

  • Jung, Sejung;Park, Jueon;Lee, Won Hee;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.989-1006
    • /
    • 2020
  • Building change monitoring based on building detection is one of the most important fields in terms of monitoring artificial structures using high-resolution multi-temporal images such as CAS500-1 and 2, which are scheduled to be launched. However, not only the various shapes and sizes of buildings located on the surface of the Earth, but also the shadows or trees around them make it difficult to detect the buildings accurately. Also, a large number of misdetection are caused by relief displacement according to the azimuth and elevation angles of the platform. In this study, object-based building detection was performed using the azimuth angle of the Sun and the corresponding main direction of shadows to improve the results of building change detection. After that, the platform's azimuth and elevation angles were used to detect changed buildings. The object-based segmentation was performed on a high-resolution imagery, and then shadow objects were classified through the shadow intensity, and feature information such as rectangular fit, Gray-Level Co-occurrence Matrix (GLCM) homogeneity and area of each object were calculated for building candidate detection. Then, the final buildings were detected using the direction and distance relationship between the center of building candidate object and its shadow according to the azimuth angle of the Sun. A total of three methods were proposed for the building change detection between building objects detected in each image: simple overlay between objects, comparison of the object sizes according to the elevation angle of the platform, and consideration of direction between objects according to the azimuth angle of the platform. In this study, residential area was selected as study area using high-resolution imagery acquired from KOMPSAT-3 and Unmanned Aerial Vehicle (UAV). Experimental results have shown that F1-scores of building detection results detected using feature information were 0.488 and 0.696 respectively in KOMPSAT-3 image and UAV image, whereas F1-scores of building detection results considering shadows were 0.876 and 0.867, respectively, indicating that the accuracy of building detection method considering shadows is higher. Also among the three proposed building change detection methods, the F1-score of the consideration of direction between objects according to the azimuth angles was the highest at 0.891.

Characteristic Response of the OSMI Bands to Estimate Chlorophyll $\alpha$ (클로로필 $\alpha$ 추정시 OSMI 밴드의 광학 반응 특성)

  • 서영상;이나경;장이현;황재동;유신재;임효숙
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.4
    • /
    • pp.187-199
    • /
    • 2002
  • Correlation between chlorophyll a in the East China Sea and spectral bands (412, 443, 490, (510), 555, (676, 765)nm) of Ocean Scanning Multi-Spectral Imager (OSMI) including the profile multi-spectral radiometer (PRR-800) was studied. The values of remote sensing reflectance (Rrs) at the bands corresponding to the field chlorophyll $\alpha$ in the East China Sea were much higher than those in clear waters off California, USA. In case of the particle absorptions related to the chlorophyll a concentration at the spectral bands (440, 670nm) were much higher in the East China Sea than the ones in the clean waters off California. The normalized water leaving radiances (nLw) at 412, 443, 490, 555 nm of OSMI and the field chlorophyll a in the East China Sea were correlated each other. According to the results, the relationship between field chlorophyll $\alpha$ and nLw 410 nm in OSMI bands was the lowest, whereas that between field chlorophyll a and nLw 555 nm in the bands was the highest. Reciprocal action between the field chlorophyll a and the band ratio of the OSMI bands (nLw410/nLw555, nLw443/nLw555, nLw490/nLw555) was also studied. Relationship between the chlorophyll $\alpha$ and the band ratio (nLw490/nLw555) was highest in the OSMI bands. Relationship between the chlorophyll $\alpha$ and the ratio (nLw490/nLw555) was higher than one in the nLw410/nLw555. The difference in the estimated chlorophyll $\alpha$ (mg/m$^3$) between OSMI and SeaWiFS (Sea Viewing Wide Field-of-View Sensor) at the special observing stations in the northern eastern sea of Jeju Island in February 25, 2002 was about less than 0.3 mg/m$^3$ within 3 hours. It is suggested that OC2 (ocean color chlorophyll 2 algorithm) be used to get much better estimation of chlorophyll $\alpha$ from OSMI than the ones from the updated algorithms as OC4.

Comparison of Wind Vectors Derived from GK2A with Aeolus/ALADIN (위성기반 GK2A의 대기운동벡터와 Aeolus/ALADIN 바람 비교)

  • Shin, Hyemin;Ahn, Myoung-Hwan;KIM, Jisoo;Lee, Sihye;Lee, Byung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1631-1645
    • /
    • 2021
  • This research aims to provide the characteristics of the world's first active lidar sensor Atmospheric Laser Doppler Instrument (ALADIN) wind data and Geostationary Korea Multi Purpose Satellite 2A (GK2A) Atmospheric Motion Vector (AMV) data by comparing two wind data. As a result of comparing the data from September 2019 to August 1, 2020, The total number of collocated data for the AMV (using IR channel) and Mie channel ALADIN data is 177,681 which gives the Root Mean Square Error (RMSE) of 3.73 m/s and the correlation coefficient is 0.98. For a more detailed analysis, Comparison result considering altitude and latitude, the Normalized Root Mean Squared Error (NRMSE) is 0.2-0.3 at most latitude bands. However, the upper and middle layers in the lower latitudes and the lower layer in the southern hemispheric are larger than 0.4 at specific latitudes. These results are the same for the water vapor channel and the visible channel regardless of the season, and the channel-specific and seasonal characteristics do not appear prominently. Furthermore, as a result of analyzing the distribution of clouds in the latitude band with a large difference between the two wind data, Cirrus or cumulus clouds, which can lower the accuracy of height assignment of AMV, are distributed more than at other latitude bands. Accordingly, it is suggested that ALADIN wind data in the southern hemisphere and low latitude band, where the error of the AMV is large, can have a positive effect on the numerical forecast model.

Development of a Storage Level and Capacity Monitoring and Forecasting Techniques in Yongdam Dam Basin Using High Resolution Satellite Image (고해상도 위성자료를 이용한 용담댐 유역 저수위/저수량 모니터링 및 예측 기술 개발)

  • Yoon, Sunkwon;Lee, Seongkyu;Park, Kyungwon;Jang, Sangmin;Rhee, Jinyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1041-1053
    • /
    • 2018
  • In this study, a real-time storage level and capacity monitoring and forecasting system for Yongdam Dam watershed was developed using high resolution satellite image. The drought indices such as Standardized Precipitation Index (SPI) from satellite data were used for storage level monitoring in case of drought. Moreover, to predict storage volume we used a statistical method based on Principle Component Analysis (PCA) of Singular Spectrum Analysis (SSA). According to this study, correlation coefficient between storage level and SPI (3) was highly calculated with CC=0.78, and the monitoring and predictability of storage level was diagnosed using the drought index calculated from satellite data. As a result of analysis of principal component analysis by SSA, correlation between SPI (3) and each Reconstructed Components (RCs) data were highly correlated with CC=0.87 to 0.99. And also, the correlations of RC data with Normalized Water Surface Level (N-W.S.L.) were confirmed that has highly correlated with CC=0.83 to 0.97. In terms of high resolution satellite image we developed a water detection algorithm by applying an exponential method to monitor the change of storage level by using Multi-Spectral Instrument (MSI) sensor of Sentinel-2 satellite. The materials of satellite image for water surface area detection in Yongdam dam watershed was considered from 2016 to 2018, respectively. Based on this, we proposed the possibility of real-time drought monitoring system using high resolution water surface area detection by Sentinel-2 satellite image. The results of this study can be applied to estimate of the reservoir volume calculated from various satellite observations, which can be used for monitoring and estimating hydrological droughts in an unmeasured area.