• Title/Summary/Keyword: Multi-Sensor

Search Result 2,023, Processing Time 0.028 seconds

Vibration Control of Vehicle using Road Profile Information (외란 형상 정보를 활용한 진동제어)

  • Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.431-437
    • /
    • 2017
  • In this study, based on the RPS algorithm, the application results to an electrically controlled suspension system using previewed road information are presented. Reducing the excessive vibration induced by a disturbance transmitted to the system and secure its stability is a major issue. In particular, in the automotive industry, the demand is constantly being raised. A typical external disturbance causing vibration and instability of a vehicle is an irregular roadway surface that contacts a running vehicle tire. Therefore, obtaining such profile information is an important process. The RPS algorithm using a multi sensor system was constructed and implemented in a real car. Through experimental work using the RPS system included non-contact type optical sensors, it could robustly reconstruct the road input profiles from the intermixed data onto the vehicle's dynamic motion while traveling at an uneven roadway surface. A controller with a preview control was designed in the framework of a semi-active suspension system based on the 7 degrees of freedom full vehicle model. The control performance of the system was evaluated through simulations and the results were compared with the passive vehicle condition. These results highlight the feasibility of the presented control frame.

Towards the development of an accurate DEM generation system from KOMPSAT-1 Electro-Optical Camera Data (다목적 실용위성 1호기 EOC카메라 영상으로부터 DEM 추출을 위한 시스템개발에 관한 고찰)

  • Taejung Kim;Heung Kyu Lee
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.232-249
    • /
    • 1998
  • The first Korean remote sensing satellite, Korea Multi-Purpose Satellite (KOMPSAT-1), is going to be launched in 1999. This will carry a 7m resolution Electro-Optical Camera (EOC) for earth observation. The primary mission of the KOMPSAT-1 is to acquire stereo imagery over the Korean peninsular for the generation of 1:25,000 scale cartographic maps. For this mission, research is being carried out to assess the possibilities of automated or semi-automated mapping of EOC data and to develop, if necessary, such enabling tools. This paper discusses the issue of automated digital elevation model (DEM) generation from EOC data and identifies some important aspects in developing a DEM generation system from EOC data. This paper also presents the current status of the development work for such a system. The development work will be described in three pares of sensor modelling, stereo matching and DEM interpolation. The performance of the system is shown with a SPOT stereo pair. A DEM generated from commercial software is also presented for comparison. The proposed system seems to generate promising results.

Assessing Spatial Uncertainty Distributions in Classification of Remote Sensing Imagery using Spatial Statistics (공간 통계를 이용한 원격탐사 화상 분류의 공간적 불확실성 분포 추정)

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.6
    • /
    • pp.383-396
    • /
    • 2004
  • The application of spatial statistics to obtain the spatial uncertainty distributions in classification of remote sensing images is investigated in this paper. Two quantitative methods are presented for describing two kinds of uncertainty; one related to class assignment and the other related to the connection of reference samples. Three quantitative indices are addressed for the first category of uncertainty. Geostatistical simulation is applied both to integrate the exhaustive classification results with the sparse reference samples and to obtain the spatial uncertainty or accuracy distributions connected to those reference samples. To illustrate the proposed methods and to discuss the operational issues, the experiment was done on a multi-sensor remote sensing data set for supervised land-cover classification. As an experimental result, the two quantitative methods presented in this paper could provide additional information for interpreting and evaluating the classification results and more experiments should be carried out for verifying the presented methods.

Wavelet-based Fusion of Optical and Radar Image using Gradient and Variance (그레디언트 및 분산을 이용한 웨이블릿 기반의 광학 및 레이더 영상 융합)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.581-591
    • /
    • 2010
  • In this paper, we proposed a new wavelet-based image fusion algorithm, which has advantages in both frequency and spatial domains for signal analysis. The developed algorithm compares the ratio of SAR image signal to optical image signal and assigns the SAR image signal to the fused image if the ratio is larger than a predefined threshold value. If the ratio is smaller than the threshold value, the fused image signal is determined by a weighted sum of optical and SAR image signal. The fusion rules consider the ratio of SAR image signal to optical image signal, image gradient and local variance of each image signal. We evaluated the proposed algorithm using Ikonos and TerraSAR-X satellite images. The proposed method showed better performance than the conventional methods which take only relatively strong SAR image signals in the fused image, in terms of entropy, image clarity, spatial frequency and speckle index.

Quantitative Estimation of Shoreline Changes Using Multi-sensor Datasets: A Case Study for Bangamoeri Beaches (다중센서를 이용한 해안선의 정량적 변화 추정: 방아머리 해빈을 중심으로)

  • Yun, Kong-Hyun;Song, Yeong Sun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.693-703
    • /
    • 2019
  • Long-term coastal topographical data is critical for analyzing temporal and spatial changes in shorelines. Especially understanding the change trends is essential for future coastal management. For this research, in the data preparation, we obtained digital aerial images, terrestrial laser scanning data and UAV images in the year of 2009. 2018 and 2019 respectively. Also tidal observation data obtained by the Korea Hydrographic and Oceanographic Agency were used for Bangamoeri beach located in Ansan, Gyeonggi-do. In the process of it, we applied the photogrammetric technique to extract the coastline of 4.40 m from the stereo images of 2009 by stereoscopic viewing. In 2018, digital elevation model was generated by using the raw data obtained from the laser scanner and the corresponding shoreline was semi-automatically extracted. In 2019, a digital elevation model was generated from the drone images to extract the coastline. Finally the change rate of shorelines was calculated using Digital Shoreline Analysis System. Also qualitative analysis was presented.

Realistic Contents and Interaction Based Realistic Contents Service (상호작용 기반의 홀로그램 실감 콘텐츠 서비스연구)

  • Lee, Wan Jung;Shin, Eun Ji;Yoon, Hyun Sun;Choi, Hee Min;Cho, Dong Sik;Kang, Hoon Jong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.10
    • /
    • pp.429-438
    • /
    • 2021
  • In recent, realistic content has been applied in various ways due to the development of display technology and hologram, the final realistic content technology, have been used limitedly in accordance with the growing public demand. However, most realistic content requires additional devices of HMD (head mounted device) or glasses type, and other realistic content display technologies deliver a single image plane in the experience space to the user, providing a monotonous content experience. Various realistic contents with hologram technology are introduced in this work. In addition, we propose an interaction based realistic hologram service based that combines projection mapping and floating holograms. Projection-mapped screens and multi-floating hologram device provide a three-dimensional volumetric space with extended depth orientation from the user's point of view, while allowing users' entire and partial motions to be recognizable through multiple sensors.

Development of High-Speed Real-Time Signal Processing Unit for Small Radio Frequency Tracking Radar Using TMS320C6678 (TMS320C6678을 적용한 소형 Radio Frequency 추적레이다용 고속 실시간 신호처리기 설계)

  • Kim, Hong-Rak;Hyun, Hyo-Young;Kim, Younjin;Woo, Seonkeol;Kim, Gwanghee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.11-18
    • /
    • 2021
  • The small radio frequency tracking radar is a tracking system with a radio frequency sensor that identifies a target through all-weather radio frequency signal processing for a target and searches, detects and tracks the target for the major target. In this paper, we describe the development of a board equipped with TMS320C6678 and XILINX FPGA (Field Programmable Gate Array), a high-speed multi-core DSP that acquires target information through all-weather radio frequency and identifies a target through real-time signal processing. We propose DSP-FPGA combination architecture for DSP and FPGA selection and signal processing, and also explain the design of SRIO for high-speed data transmission.

Hovering System for Autonomous Flight of Multi-copter (멀티콥터의 자율비행을 위한 호버링 시스템)

  • Kim, Hyung-Su;Park, Byeong-Ho;Han, Young-Hwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.49-56
    • /
    • 2018
  • As the era of the 4th industrial revolution comes, there is a growing interest in the use of UAVs. While various technologies are being developed using drones, controlling flight of drones is the most basic. Hovering control is essential in order to enable autonomous flight, especially during flight control of drones. In this paper, we design drones based on ATmega2560, Sonar, Optical Flow, and acceleration / gyro 6 axis sensor for drones hovering control, and developed horizontal control, altitude control, position tracking and fixed algorithm based on PID control. In this research, in order to measure the objective result of the drone, keeping the altitude immediately after the drone takes off according to the time, measure the movement value until the position is fixed and stable hovering is maintained and compared analyzed. Experimental results show that the drones can stably hover within 4cm horizontal and 2cm vertical from 50cm above the reference coordinates.

KOMPSAT Imagery Application Status (다목적실용위성 영상자료 활용 현황)

  • Lee, Kwangjae;Kim, Younsoo;Chae, Taebyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1311-1317
    • /
    • 2018
  • The ultimate goal of satellite development is to use information obtained from satellites. Therefore, national-levelsatellite development program should include not only hardware development, but also infrastructure establishment and application technology development for information utilization. Until now, Korea has developed various satellites and has been very useful in weather and maritime surveillance as well as various disasters. In particular, KOMPSAT (Korea Multi-purpose Satellite) images have been used extensively in agriculture, forestry and marine fields based on high spatial resolution, and has been widely used in research related to precision mapping and change detection. This special issue aims to introduce a variety of recent studies conducted using KOMPSAT optical and SAR (Synthetic Aperture Radar) images and to disseminate related satellite image application technologies to the public sector.

A CPU-GPU Hybrid System of Environment Perception and 3D Terrain Reconstruction for Unmanned Ground Vehicle

  • Song, Wei;Zou, Shuanghui;Tian, Yifei;Sun, Su;Fong, Simon;Cho, Kyungeun;Qiu, Lvyang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1445-1456
    • /
    • 2018
  • Environment perception and three-dimensional (3D) reconstruction tasks are used to provide unmanned ground vehicle (UGV) with driving awareness interfaces. The speed of obstacle segmentation and surrounding terrain reconstruction crucially influences decision making in UGVs. To increase the processing speed of environment information analysis, we develop a CPU-GPU hybrid system of automatic environment perception and 3D terrain reconstruction based on the integration of multiple sensors. The system consists of three functional modules, namely, multi-sensor data collection and pre-processing, environment perception, and 3D reconstruction. To integrate individual datasets collected from different sensors, the pre-processing function registers the sensed LiDAR (light detection and ranging) point clouds, video sequences, and motion information into a global terrain model after filtering redundant and noise data according to the redundancy removal principle. In the environment perception module, the registered discrete points are clustered into ground surface and individual objects by using a ground segmentation method and a connected component labeling algorithm. The estimated ground surface and non-ground objects indicate the terrain to be traversed and obstacles in the environment, thus creating driving awareness. The 3D reconstruction module calibrates the projection matrix between the mounted LiDAR and cameras to map the local point clouds onto the captured video images. Texture meshes and color particle models are used to reconstruct the ground surface and objects of the 3D terrain model, respectively. To accelerate the proposed system, we apply the GPU parallel computation method to implement the applied computer graphics and image processing algorithms in parallel.