• Title/Summary/Keyword: Multi-Sensitivity Model

Search Result 222, Processing Time 0.024 seconds

Economic Evaluation of Coupling APR1400 with a Desalination Plant in Saudi Arabia

  • Abdoelatef, M. Gomaa;Field, Robert M.;Lee, YongKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-87
    • /
    • 2016
  • Combining power generation and water production by desalination is economically advantageous. Most desalination projects use fossil fuels as an energy source, and thus contribute to increased levels of greenhouse gases. Environmental concerns have spurred researchers to find new sources of energy for desalination plants. The coupling of nuclear power production with desalination is one of the best options to achieve growth with lower environmental impact. In this paper, we will per-form a sensitivity study of coupling nuclear power to various combinations of desalination technology: {1} thermal (MSF [Multi-Stage Flashing], MED [Multi-Effect Distillation], and MED-TVC [Multi-Effect Distillation with Thermal Vapour Compression]); {2} membrane RO [Reverse Osmosis]; and {3} hybrid (MSF-RO [Multi-Stage Flashing & Reverse Osmosis] and MED-RO [Multi-Effect Distillation & Reverse Osmosis]). The Korean designed reactor plant, the APR1400 will be modeled as the energy production facility. The economical evaluation will then be executed using the computer program DEEP (Desalination Economic Evaluation Program) as developed by the IAEA. The program has capabilities to model several types of nuclear and fossil power plants, nuclear and fossil heat sources, and thermal distillation and membrane desalination technologies. The output of DEEP includes levelized water and power costs, breakdowns of cost components, energy consumption, and net saleable power for any selected option. In this study, we will examine the APR1400 coupled with a desalination power plant in the Kingdom of Saudi Arabia (KSA) as a prototypical example. The KSA currently has approximately 20% of the installed worldwide capacity for seawater desalination. Utilities such as power and water are constructed and run by the government. Per state practice, economic evaluation for these utilities do not consider or apply interest or carrying cost. Therefore, in this paper the evaluation results will be based on two scenarios. The first one assumes the water utility is under direct government control and in this case the interest and discount rate will be set to zero. The second scenario will assume that the water utility is controlled by a private enterprise and in this case we will consider different values of interest and discount rates (4%, 8%, & 12%).

The Mediating Effects of Internalized Shame and Rejection Sensitivity in the Relationship Between Childhood Trauma and Relationship Addiction (아동기 외상과 관계중독 간 관계에서 내면화된 수치심과 거절민감성의 매개효과)

  • Song, Yeon-Joo;Ha, Moon-Sun
    • Korean Journal of Culture and Social Issue
    • /
    • v.26 no.2
    • /
    • pp.99-119
    • /
    • 2020
  • The purpose of this study was to construct and test a hypothetical model about impact of childhood trauma on Relationship Addiction of Korean adults the multiple mediating effects of rejection sensitivity and internalized shame. A purposive sample of 465 Korean adults was recruited from three provincial areas. The collected data were then analyzed using SPSS 23.0 and AMOS 23.0 programs. For data analysis, descriptive statistics and structural equation modeling were performed. Multiple mediating effects analysis using phantom variable and bootstrapping were implemented to verify the mediating effect of the research model. We found no significant direct effect of childhood trauma on relationship addiction, but the effects of childhood trauma on Relationship Addiction were successively multi-mediated by internalized shame and rejection sensitivity (B=.265, p<.01), and single-mediated by internalized shame (B=.496, p<.01). Based on the results of this study, it can be suggested that in order to prevent relationship addiction of adults, it is necessary to first explore whether he has experienced childhood trauma and thereby has not only internalized shame but also rejection sensitivity.

A Quantitative Vigilance Measuring Model by Fuzzy Sets Theory in Unlimited Monitoring Task

  • Liu, Cheng-Li;Uang, Shiaw-Tsyr;Su, Kuo-Wei
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.2
    • /
    • pp.176-183
    • /
    • 2005
  • The theory of signal detection has been applied to a wide range of practical situation for a long time, including sonar detection, air traffic control and so on. In general, in this theory, sensitivity parametric index d' and bias parametric index $\beta$ are used to evaluated the performance of vigilance. These indices use observer's response "hit" and "false alarm" to explain and evaluate vigilance, but not considering reaction time. However, the reaction time of detecting should be considered in measuring vigilance in some supervisory tasks such as unlimited monitoring tasks (e.g., supervisors in nuclear plant). There are some researchers have used the segments of reaction time to generate a pair of probabilities of hit and false alarm probabilities and plot the receiver operating characteristic curve. The purpose of this study was to develop a quantitative vigilance-measuring model by fuzzy sets, which combined the concepts of hit, false alarm and reaction time. The model extends two-values logic to multi-values logic by membership functions of fuzzy sets. A simulated experiment of monitoring task in nuclear plant was carried out. Results indicated that the new vigilance-measuring model is more efficient than traditional indices; the characteristics of vigilance would be realized more clearly in unlimited monitoring task.

Numerical study of 10-year-old child forearm injury

  • Mao, Haojie;Cai, Yun;Yang, King H.
    • Advances in biomechanics and applications
    • /
    • v.1 no.3
    • /
    • pp.143-158
    • /
    • 2014
  • Forearm fractures in children are very common among all pediatric fractures. However, biomechanical investigations on the pediatric forearm are rather scarce, partially due to the complex anatomy, closely situated, interrelated structures, highly dynamic movement patterns, and lack of appropriate tools. The purpose of this study is to develop a computational tool for child forearm investigation and characterize the mechanical responses of a backward fall using the computational model. A three-dimensional 10-year-old child forearm finite element (FE) model, which includes the ulna, radius, carpal bones, metacarpals, phalanges, cartilages and ligaments, was developed. The high-quality hexahedral FE meshes were created using a multi-block approach to ensure computational accuracy. The material properties of the FE model were obtained by scaling reported adult experimental data. The design of computational experiments was performed to investigate material sensitivity and the effects of relevant parameters in backward fall. Numerical results provided a spectrum of child forearm responses with various effective masses and forearm angles. In addition, a conceptual L-shape wrist guard design was simulated and found to be able to reduce child distal radius fracture.

Real-Time Flood Forecasting Using Rainfall-Runoff Model: II. Application (降雨-流出模型을 이용한 實時間 洪水豫測: II. 流域의 適用)

  • 정동국
    • Water for future
    • /
    • v.29 no.1
    • /
    • pp.151-161
    • /
    • 1996
  • The proposed flood forecasting system combines a flood routing model with a parameter estimation model. In the parameter estimation model system states and parameters are treated with the extended state-space formulation. The extended Kalman filter is adopted to estimate the states and parameters. A sensitivity analysis is used to investigate the relative significance of the parameters. Insensitive parameters are treated as constants and parameters that are mutually correlated are combined in a simplified form. The developed estimation methodology is applied todam sites of the multi-purpose reservoirs in Korea. The forecasted hydrographs from the extended Kalman filter satisfactorily coincide with the observed. From the time sequence plots of estimated parameters, it is found that the storage coefficient is almost constant, but exponent varies appreciably in time.

  • PDF

Collaborative Secure Decision Tree Training for Heart Disease Diagnosis in Internet of Medical Things

  • Gang Cheng;Hanlin Zhang;Jie Lin;Fanyu Kong;Leyun Yu
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.514-523
    • /
    • 2024
  • In the Internet of Medical Things, due to the sensitivity of medical information, data typically need to be retained locally. The training model of heart disease data can predict patients' physical health status effectively, thereby providing reliable disease information. It is crucial to make full use of multiple data sources in the Internet of Medical Things applications to improve model accuracy. As network communication speeds and computational capabilities continue to evolve, parties are storing data locally, and using privacy protection technology to exchange data in the communication process to construct models is receiving increasing attention. This shift toward secure and efficient data collaboration is expected to revolutionize computer modeling in the healthcare field by ensuring accuracy and privacy in the analysis of critical medical information. In this paper, we train and test a multiparty decision tree model for the Internet of Medical Things on a heart disease dataset to address the challenges associated with developing a practical and usable model while ensuring the protection of heart disease data. Experimental results demonstrate that the accuracy of our privacy protection method is as high as 93.24%, representing a difference of only 0.3% compared with a conventional plaintext algorithm.

Sensitivity Analysis to the Design Factor of Ocean Outfall System (방류관 설계인자에 대한 민감도 분석)

  • 김지연;이중우
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.361-371
    • /
    • 2000
  • A demand of marine outfall system has been much increased for the effective disposal of the wastewater due to population and industrial development at the coastal areas. The outfall system discharges primary or secondary treated effluent into the coastline, or at the deep water, or between these two. The discharge is carried out by constructing a pipeline on the sea bed with a diffuser or with a tunnel, risers and appropriate. The effluent, which has a density similar to that of fresh water, rises to the sea surface forming plume or jet, together with entraining the surrounding salt water and becomes very dilute. Thus there have been growing interests about plume behaviour around the outfall system. Plume or jet discharged from single-port or multi-port diffuser might cause certain impacts on coastal environment. Near field mixing characteristics of discharged water field using CORMIX model have been studied for effective outfall design various conditions on ambient current, depth, flow rate, effluent concentration, diffuser specification, port specification etc.. This kind of analysis is necessary to deal with water quality problems caused by the ocean discharge. The analyzed result was applied to the Pusan Jungang effluent outfall system plan.

  • PDF

Sensitivity Analysis to the Design Factor of Ocean Outfall System (방류관 설계인자에 대한 민감도 분석)

  • 김지연;이중우
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.85.2-93
    • /
    • 2000
  • A demand of marine outfall system have been much increased for the effective disposal of the wastewater due to population and industrial development at the coastal areas. The outfall system discharges primary or secondary treated effluent into coastline or at the deep water, or between these two. The discharge is carried out by constructing a pipeline on the sea bed with a diffuser or with a tunnel, risers and appropriate. The effluent, which has a density similar to that of fresh water, rises to the sea surface forming plume or jet, together with entraining the surrounding salt water and becomes very dilute. Thus there have been growing interests about plume behaviour around the outfall system. Plume or jet discharged from single-port or multi-port diffuser might cause certain impacts on coastal environment. Near field mixing characteristics of discharged water field using CORMIX model with has been studied for effective outfall design various conditions on ambient current, depth, flow rate, effluent concentration, diffuser specification, port specification etc.. This kind of analysis is necessary to deal with water quality problems caused by the ocean discharge. The analyzed vesult was applied to the Pusan Jungang dffluent outfall system plan.

  • PDF

IMPROVEMENT OF RIDE AND HANDLING CHARACTERISTICS USING MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES

  • KIM W. Y.;KIM D. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.141-148
    • /
    • 2005
  • In order to reduce the time and costs of improving the performance of vehicle suspensions, the techniques for optimizing damping and air spring characteristic were proposed. A full vehicle model for a bus is constructed with a car body, front and rear suspension linkages, air springs, dampers, tires, and a steering system. An air spring and a damper are modeled with nonlinear characteristics using experimental data and a curve fitting technique. The objective function for ride quality is WRMS (Weighted RMS) of the power spectral density of the vertical acceleration at the driver's seat, middle seat and rear seat. The objective function for handling performance is the RMS (Root Mean Squares) of the roll angle, roll rate, yaw rate, and lateral acceleration at the center of gravity of a body during a lane change. The design variables are determined by damping coefficients, damping exponents and curve fitting parameters of air spring characteristic curves. The Taguchi method is used in order to investigate sensitivity of design variables. Since ride and handling performances are mutually conflicting characteristics, the validity of the developed optimum design procedure is demonstrated by comparing the trends of ride and handling performance indices with respect to the ratio of weighting factors. The global criterion method is proposed to obtain the solution of multi-objective optimization problem.

The Optimization of Sizing and Topology Design for Drilling Machine by Genetic Algorithms (유전자 알고리즘에 의한 드릴싱 머신의 설계 최적화 연구)

  • Baek, Woon-Tae;Seong, Hwal-Gyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.24-29
    • /
    • 1997
  • Recently, Genetic Algorithm(GA), which is a stochastic direct search strategy that mimics the process of genetic evolution, is widely adapted into a search procedure for structural optimization. Contrast to traditional optimal design techniques which use design sensitivity analysis results, GA is very simple in their algorithms and there is no need of continuity of functions(or functionals) any more in GA. So, they can be easily applicable to wide area of design optimization problems. Also, owing to multi-point search procedure, they have higher porbability of convergence to global optimum compared to traditional techniques which take one-point search method. The methods consist of three genetics opera- tions named selection, crossover and mutation. In this study, a method of finding the omtimum size and topology of drilling machine is proposed by using the GA, For rapid converge to optimum, elitist survival model,roulette wheel selection with limited candidates, and multi-point shuffle cross-over method are adapted. And pseudo object function, which is the combined form of object function and penalty function, is used to include constraints into fitness function. GA shows good results of weight reducing effect and convergency in optimal design of drilling machine.

  • PDF