• 제목/요약/키워드: Multi-Scale Modelling

검색결과 27건 처리시간 0.018초

MULTI-DIMENSIONAL APPROACHES IN SEVERE ACCIDENT MODELLING AND ANALYSES

  • Fichot, F.;Marchand, O.;Drai, P.;Chatelard, P.;Zabiego, M.;Fleurot, J.
    • Nuclear Engineering and Technology
    • /
    • 제38권8호
    • /
    • pp.733-752
    • /
    • 2006
  • Severe accidents in PWRs are characterized by a continuously changing geometry of the core due to chemical reactions, melting and mechanical failure of the rods and other structures. These local variations of the porosity and other parameters lead to multi-dimensionnal flows and heat transfers. In this paper, a comprehensive set of multi-dimensionnal models describing heat transfers, thermal-hydraulics and melt relocation in a reactor vessel is presented. Those models are suitable for the core description during a severe accident transient. A series of applications at the reactor scale shows the benefits of using such models.

Critical multi-field load analysis of the piezoelectric/piezomagnetic microplates as an application in sports equipment

  • Yi Zhu
    • Advances in nano research
    • /
    • 제15권5호
    • /
    • pp.485-493
    • /
    • 2023
  • Critical multi-field loads and free vibration responses of the sandwich piezoelectric/piezomagnetic microplate subjected to combination of magnetoelectromechanical loads based on a thickness-stretched higher order shear deformable model using Hamilton's principle. The lateral displacement is assumed summation of bending, shearing and stretching functions. The elasti core is sandwiched by a couple of piezoelectric/piezomagnetic face-sheets subjected to electromagnetocmechanical loads. The work of external force is calculated with considering the in-plane mechanical, electrical and magnetic loads based on piezomagnetoelasticity relations. The critical multi field loading and natural frequency analysis are performed to investigate influence of geometric and loading parameters on the responses. A verification is performed for justification of the numerical results.

지표피복변화 연구에서 최적의 공간스케일의 문제 : 가나 북부지역의 사바나 지역을 사례로 (Optimal Spatial Scale for Land Use Change Modelling : A Case Study in a Savanna Landscape in Northern Ghana)

  • 닉반드기슨;폴플렉;박수진
    • 대한지리학회지
    • /
    • 제40권2호
    • /
    • pp.221-241
    • /
    • 2005
  • 토지이용 및 지표피복변화 (Land Use and land Cover Changes, LUCC)는 지구환경변화의 원인으로 중요한 연구대상이 되고 있다. LUCC는 복잡한 사회적, 경제적, 정치적 상호작용속에서 다양한 시$\cdot$공간적 스케일에서 발생하게 된다. 따라서 LUCC를 모델화하기 위해서는 LUCC를 야기시키는 원인(driving forces)과 제한요인(constraints)들의 시$\cdot$공간적인 다양성을 이해하는 작업이 선행되어야 한다. 특히, 특정 지역에서 나타나는 LUCC의 동인을 파악하기 위해서는 스케일에 따른 그 특성의 변화를 이해하는 것이 급선무이다. 이 연구는 가나(Ghana) 북부지역의 사바나 지역을 대상으로 지난 15년간 나타난 지표피복변화의 공간적인 다양성을 파악한 뒤, 공간적 스케일을 달리하면서 나타나는 LUCC의 원인을 분석하였다. 이 과정을 통해 사바나 지역에서 LUCC 과정을 모형화하기 위한 최적의 공간적인 스케일을 규명하고자 하였다. 연구지역은 지난 15년간 인구증가의 결과로 농업생산활동이 급격하게 증가한 지역이다. 연구지역에서 나타나는 지표피복변화의 정도는 LANDSAT 위성영상에서 추출한 NDVI들을 다변량 통계분석기법을 이용하여 정량화하였다. 그리고 지표피복변화의 원인을 스케일별로 파악하기 위한 도구로 다축척 계층분석기법(multi-scale hierarchical adaptive model)을 개발$\cdot$제안하였다. 개발된 기법은 지표피복의 변화정도와 원인이 될 수 있는 공간변수들간의 상관성을 공간적인 스케일을 달리하면서 순차적으로 계산해낼 수 있는 기법이다. 이 연구에서 지표피복변화의 원인으로는 '도로에서부터의 거리', 하천으로부터의 거리', '지형특성' 의 세가지 변수를 사용하였다. 지표피복 변화정도와 위의 세가지 변수들간의 상관관계는 공간적인 범위가 10$\times$10km 이하인 경우에 높게 나타났다. 하지만 공간범위가 그 이상이 될 경우에는 그 내부에서 나타나는 다양성으로 인해 통계적인 상관성이 현격하게 낮아지는 것을 관찰할 수 있었다. 이러한 결과는 지역 및 국가 단위의 환경변화모델에서 모델의 공간적인 구성범위가 일정한 수준을 넘으면, 그 내부에서 발생하고 있는 다양성이 급격하게 증가하여 지표피복변화의 원인과 결과를 정확하게 파악하기 힘들게 된다는 것을 의미한다. 10$\times$10km의 공간적인 범위는 농업생산이 위주가 되는 사바나 지역에서는 주로 개별 마을이 차지하고 있는 공간적인 범위와 대체적으로 일치한다. 따라서 사바나 지역에서 나타나는 지표피복변화의 다양성을 고려하면서 보다 정확하게 모형화하기 위해서는 마을단위에서 나타나는 지표피복변화과정이 최소의 모델단위가 되어야 함을 시사한다.

EXTENSION OF CFD CODES APPLICATION TO TWO-PHASE FLOW SAFETY PROBLEMS

  • Bestion, Dominique
    • Nuclear Engineering and Technology
    • /
    • 제42권4호
    • /
    • pp.365-376
    • /
    • 2010
  • This paper summarizes the results of a Writing Group on the Extension of CFD codes to two-phase flow safety problems, which was created by the Group for Analysis and Management of Accidents of the Nuclear Energy Agency' Committee on the Safety of Nuclear Installations (NEA-CSNI). Two-phase CFD used for safety investigations may predict small scale flow processes, which are not seen by system thermalhydraulic codes. However, the two-phase CFD models are not as mature as those in the single phase CFD and potential users need some guidance for proper application. In this paper, a classification of various modelling approaches is proposed. Then, a general multi-step methodology for using two-phase-CFD is explained, including a preliminary identification of flow processes, a model selection, and a verification and validation process. A list of 26 nuclear reactor safety issues that could benefit from investigations at the CFD scale is identified. Then, a few issues are analyzed in more detail, and a preliminary state-of-the-art is proposed and the remaining gaps in the existing approaches are identified. Finally, guidelines for users are proposed.

UGC 모델링에 관한 연구(I) (A Study on Modeling of Unmanned Gantry Crane (1))

  • 박경택;김두형;신영재;박찬훈;김용선
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1999년도 추계학술대회논문집
    • /
    • pp.333-344
    • /
    • 1999
  • Currently many studies on the unmanned gantry crane for the automated container terminal are accomplished. This is needed for the development of large scale, automation, high speed, unmanned system and information system in port facility. In order to do efficient container handling job in port yard, the automated handling system is well adapted to the job environments and all-season weather, In order to realize the automatic and unmanned system for container handling job, the required functions and main structure system are studied. The major problems of operation of the conventional gantry crane are that the vibration of gantry structure body is occurred by operation and that high-speed and precision position-velocity control and the capability to dope to the external disturbances caused by the wind, rain, fog and job environments. In this paper, the fundamental study for establishment of the concept and the dynamic modelling of the major sub system of the unmanned gantry crane is presented. These studies are useful for design and manufacturing of the new concept model of the unmanned gantry crane for efficient operation of the automated container terminal.

  • PDF

Experimental and numerical analysis of corrosion-induced cover cracking in reinforced concrete sample

  • Richard, Benjamin;Quiertant, Marc;Bouteiller, Veronique;Delaplace, Arnaud;Adelaide, Lucas;Ragueneau, Frederic;Cremona, Christian
    • Computers and Concrete
    • /
    • 제18권3호
    • /
    • pp.421-439
    • /
    • 2016
  • Corrosion of embedded reinforcing bars is recognized as being the major cause of deterioration of reinforced concrete structures. With regard to maintenance strategies of concrete nuclear structures, the monitoring of cracking remains of primary importance. Recently, authors have developed a post-treatment technique to extract crack features from continuous computations. In this paper, such technique is applied to carry out a numerical analysis of an accelerated corrosion test. Obtained results allow highlighting specific propagation and failure mechanisms that characterize corrosion-induced cracking.

Impact force localization for civil infrastructure using augmented Kalman Filter optimization

  • Saleem, Muhammad M.;Jo, Hongki
    • Smart Structures and Systems
    • /
    • 제23권2호
    • /
    • pp.123-139
    • /
    • 2019
  • Impact forces induced by external object collisions can cause serious damages to civil engineering structures. While accurate and prompt identification of such impact forces is a critical task in structural health monitoring, it is not readily feasible for civil structures because the force measurement is extremely challenging and the force location is unpredictable for full-scale field structures. This study proposes a novel approach for identification of impact force including its location and time history using a small number of multi-metric observations. The method combines an augmented Kalman filter (AKF) and Genetic algorithm for accurate identification of impact force. The location of impact force is statistically determined in the way to minimize the AKF response estimate error at measured locations and then time history of the impact force is accurately constructed by optimizing the error co-variances of AKF using Genetic algorithm. The efficacy of proposed approach is numerically demonstrated using a truss and a plate model considering the presence of modelling error and measurement noises.

Towards grain-scale modelling of the release of radioactive fission gas from oxide fuel. Part II: Coupling SCIANTIX with TRANSURANUS

  • G. Zullo;D. Pizzocri;A. Magni;P. Van Uffelen;A. Schubert;L. Luzzi
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4460-4473
    • /
    • 2022
  • The behaviour of the fission gas plays an important role in the fuel rod performance. In a previous work, we presented a physics-based model describing intra- and inter-granular behaviour of radioactive fission gas. The model was implemented in SCIANTIX, a mesoscale module for fission gas behaviour, and assessed against the CONTACT 1 irradiation experiment. In this work, we present the multi-scale coupling between the TRANSURANUS fuel performance code and SCIANTIX, used as mechanistic module for stable and radioactive fission gas behaviour. We exploit the coupled code version to reproduce two integral irradiation experiments involving standard fuel rod segments in steady-state operation (CONTACT 1) and during successive power transients (HATAC C2). The simulation results demonstrate the predictive capabilities of the code coupling and contribute to the integral validation of the models implemented in SCIANTIX.

Using neural networks to model and predict amplitude dependent damping in buildings

  • Li, Q.S.;Liu, D.K.;Fang, J.Q.;Jeary, A.P.;Wong, C.K.
    • Wind and Structures
    • /
    • 제2권1호
    • /
    • pp.25-40
    • /
    • 1999
  • In this paper, artificial neural networks, a new kind of intelligent method, are employed to model and predict amplitude dependent damping in buildings based on our full-scale measurements of buildings. The modelling method and procedure using neural networks to model the damping are studied. Comparative analysis of different neural network models of damping, which includes multi-layer perception network (MLP), recurrent neural network, and general regression neural network (GRNN), is performed and discussed in detail. The performances of the models are evaluated and discussed by tests and predictions including self-test, "one-lag" prediction and "multi-lag" prediction of the damping values at high amplitude levels. The established models of damping are used to predict the damping in the following three ways : (1) the model is established by part of the data measured from one building and is used to predict the another part of damping values which are always difficult to obtain from field measurements : the values at the high amplitude level. (2) The model is established by the damping data measured from one building and is used to predict the variation curve of damping for another building. And (3) the model is established by the data measured from more than one buildings and is used to predict the variation curve of damping for another building. The prediction results are discussed.

A large scale simulation of floe-ice fractures and validation against full-scale scenario

  • Lu, Wenjun;Heyn, Hans-Martin;Lubbad, Raed;Loset, Sveinung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.393-402
    • /
    • 2018
  • While interacting with a sloping structure, an ice floe may fracture in different patterns. For example, it can be local bending failure or global splitting failure depending on the contact properties, geometry and confinement of the ice floe. Modelling these different fracture patterns as a natural outcome of numerical simulations is rather challenging. This is mainly because the effects of crack propagation, crack branching, multi fracturing modes and eventual fragmentation within a solid material are still questions to be answered by the on-going research in the Computational Mechanic community. In order to simulate the fracturing of ice floes with arbitrary geometries and confinement; and also to simulate the fracturing events at such a large scale yet with sufficient efficiency, we propose a semi-analytical/empirical and semi-numerical approach; but with focus on the global splitting failure mode in this paper. The simulation method is validated against data we collected during the Oden Arctic Technology Research Cruise 2015 (OATRC2015). The data include: 1) camera images based on which we specify the exact geometry of ice floes before and after an impact and fracturing event; 2) IMU data based on which the global dynamic force encountered by the icebreaker is extracted for the impact event. It was found that this method presents reasonably accurate results and realistic fracturing patterns upon given ice floes.