• Title/Summary/Keyword: Multi-Robot System

Search Result 467, Processing Time 0.031 seconds

Design of Multi-Linked Lifter (다관절 고소 작업 장치의 개발)

  • Kim, Myun-Hee;Lee, Sang-Ryong
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.562-565
    • /
    • 2000
  • For solving problems of manpower and improving working environment, Robot System have been introduced. In the past, Robot System was adopted mass production, indoor factory condition, but present Robot System is applied to many other fields. This applied field is Robot System was adopted fruit harvest, maintenance, and so on. The developed Multi-Linked Lifter is applied to eminant multi-purpose working. The purpose of this study is to develop control algorithm for this equipment composed of multi-linked manipulator.

  • PDF

Multi-robot control using Petri-net

  • Park, Se-Woong;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.59.5-59
    • /
    • 2001
  • Multi-agent robot system is the system which executes by cooperating with each robots and controlling several robots. Capability and function of each robot must be considered for cooperation behavior. Furthermore, it is necessary to analyze the given environment and to replace complex task with some simple tasks. Analysis of the given environment and role assignment for the given tasks are composed of discret event. In this paper, the hierarchical controller for multi-agent robot system using the petri-net state diagram is proposed. The proposed modeling method is implemented for soccer robot system. The effectiveness of proposed modeling method is shown through experiment.

  • PDF

A Workspace Analysis Method of Multi-Legged Walking Robot in the Velocity Domain (다족 보행로봇의 속도작업공간 해석)

  • 이지홍;전봉환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.477-483
    • /
    • 2002
  • This paper deals with a workspace analysis of multi-legged walking robots in velocity domain(velocity workspace analysis). Noting that when robots are holding the same object in multiple cooperating robotic arm system the kinematic structure of the system is basically the same with that of a multi-legged walking robot standing on the ground, we invented a way ot applying the technique for multiple arm system to multi-legged walking robot. An important definition of reaction velocity is made and the bounds of velocities achievable by the moving body with multi-legs is derived from the given bounds on the capabilities of actuators of each legs through Jacobian matrix for given robot configuration. After some assumption of hard-foot-condition is adopted as a contact model between feet of robot and the ground, visualization process for the velocity workspace is proposed. Also, a series of application examples will be presented including continuous walking gaits as well as several different stationary posture of legged walking robots, which validate the usefulness of the proposed technique.

Development of a Multi-Robot Control Language (다중 로보트 제어 언어 개발)

  • Kim, Tae-Won;Suh, Il-Hong;Oh, Young-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.446-449
    • /
    • 1990
  • A Multi-Robot Control language (MRCL) is proposed to effectively control the multi-robot. MRCL has not only single-robot, command, but multi-robot command with multi-task OS, XINU. Concurrent motion, coordinate motion, and simple collision avoidance motion are implemented. This language is expected to act as a intelligent supporting tool for multi-robot system. To verify the effectiveness of the MRCL, a simple puzzle matching example is illustrated.

  • PDF

Cooperative Foraging Behavior of Multi Robot System with Simple Interaction

  • Sugawara, Ken;Sano, Masaki;Yoshihara, Ikuo;Abe, Kenichi;Watanabe, Toshinori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.155.3-155
    • /
    • 2001
  • Researches of multi-robot system are active in these days. The most remarkable characteristic of multirobot system is that the robots work cooperatively and achieve the task which a single robot cannot do. It is essential to investigate number effect of multi-robot system. In this paper, we chose foraging task and investigated their behavior. At first, we investigated the foraging behavior in case that interaction range is Infinite. Secondly, we investigated the behavior in case that interaction range is finite. In both case, we find out there is an optimum interaction duration.

  • PDF

Collision Avoidance Path Planning for Multi-Mobile Robot System : Fuzzy and Potential Field Method Employed (멀티 모바일 로봇 시스템의 충돌회피 경로 계획 : 퍼지 및 포텐셜 필드 방법 적용)

  • Ahn, Chang-Hwan;Kim, Dong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.163-173
    • /
    • 2010
  • In multi-mobile robot environment, path planning and collision avoidance are important issue to perform a given task collaboratively and cooperatively. The proposed approach is based on a potential field method and fuzzy logic system. For a global path planner, potential field method is employed to select proper path of a corresponding robot and fuzzy logic system is utilized to avoid collisions with static or dynamic obstacles around the robot. This process is continued until the corresponding target of each robot is reached. To test this method, several simulation-based experimental results are given. The results show that the path planning and collision avoidance strategies are effective and useful for multi-mobile robot systems.

Embodiment of Effective Multi-Robot Control Algorithm Using Petri-Net (Petri-Net을 이용한 효과적인 다중로봇 제어알고리즘의 구현)

  • 선승원;국태용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.11
    • /
    • pp.906-916
    • /
    • 2003
  • A multi-robot control algorithm using Petri-Net is proposed for 5vs5 robot soccer. The dynamic environment of robot soccer is modeled by defining the place and transition of each robot and converting it into Petri-Net diagram. Once all the places and transitions of robots are represented by the Petri-Net model, their actions can be chosen according to the roles of robots and position of the ball in soccer game, e.g., offensive, defensive and goalie robot. The proposed modeling method is implemented for soccer robot system. The efficiency and applicability of the proposed multiple-robot control algorithm using Petri-Net are demonstrated through 5vs5 Middle League SimuroSot soccer game.

Performance Evaluation of Multi-Hop Communication Based on a Mobile Multi-Robot System in a Subterranean Laneway

  • Liu, Qing-Ling;Oh, Duk-Hwan
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.471-482
    • /
    • 2012
  • For disaster exploration and surveillance application, this paper aims to present a novel application of a multi-robot agent based on WSN and to evaluate a multi-hop communication caused by the robotics correspondingly, which are used in the uncertain and unknown subterranean tunnel. A Primary-Scout Multi-Robot System (PS-MRS) was proposed. A chain topology in a subterranean environment was implemented using a trimmed ZigBee2006 protocol stack to build the multi-hop communication network. The ZigBee IC-CC2530 modular circuit was adapted by mounting it on the PS-MRS. A physical experiment based on the strategy of PS-MRS was used in this paper to evaluate the efficiency of multi-hop communication and to realize the delivery of data packets in an unknown and uncertain underground laboratory environment.

Multi-Robot Localization based on Bayesian Multidimensional Scaling

  • Je, Hong-Mo;Kim, Dai-Jin
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.357-361
    • /
    • 2007
  • This paper presents a multi-robot localization based on Bayesian Multidimensional Scaling (BMDS). We propose a robust MDS to handle both the incomplete and noisy data, which is applied to solve the multi-robot localization problem. To deal with the incomplete data, we use the Nystr${\ddot{o}}$m approximation which approximates the full distance matrix. To deal with the uncertainty, we formulate a Bayesian framework for MDS which finds the posterior of coordinates of objects by means of statistical inference. We not only verify the performance of MDS-based multi-robot localization by computer simulations, but also implement a real world localization of multi-robot team. Using extensive empirical results, we show that the accuracy of the proposed method is almost similar to that of Monte Carlo Localization(MCL).

  • PDF

A combined auction mechanism for online instant planning in multi-robot transportation problem

  • Jonban, Mansour Selseleh;Akbarimajd, Adel;Hassanpour, Mohammad
    • Advances in robotics research
    • /
    • v.2 no.3
    • /
    • pp.247-257
    • /
    • 2018
  • Various studies have been performed to coordinate robots in transporting objects and different artificial intelligence algorithms have been considered in this field. In this paper, we investigate and solve Multi-Robot Transportation problem by using a combined auction algorithm. In this algorithm each robot, as an agent, can perform the auction and allocate tasks. This agent tries to clear the auction by studying different states to increase payoff function. The algorithm presented in this paper has been applied to a multi-robot system where robots are responsible for transporting objects. Using this algorithm, robots are able to improve their actions and decisions. To show the excellence of the proposed algorithm, its performance is compared with three heuristic algorithms by statistical simulation approach.