• Title/Summary/Keyword: Multi-Robot Localization

Search Result 48, Processing Time 0.027 seconds

Robust Multidimensional Scaling for Multi-robot Localization (멀티로봇 위치 인식을 위한 강화 다차원 척도법)

  • Je, Hong-Mo;Kim, Dai-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.117-122
    • /
    • 2008
  • This paper presents a multi-robot localization based on multidimensional scaling (MDS) in spite of the existence of incomplete and noisy data. While the traditional algorithms for MDS work on the full-rank distance matrix, there might be many missing data in the real world due to occlusions. Moreover, it has no considerations to dealing with the uncertainty due to noisy observations. We propose a robust MDS to handle both the incomplete and noisy data, which is applied to solve the multi-robot localization problem. To deal with the incomplete data, we use the Nystr$\ddot{o}$m approximation which approximates the full distance matrix. To deal with the uncertainty, we formulate a Bayesian framework for MDS which finds the posterior of coordinates of objects by means of statistical inference. We not only verify the performance of MDS-based multi-robot localization by computer simulations, but also implement a real world localization of multi-robot team. Using extensive empirical results, we show that the accuracy of the proposed method is almost similar to that of Monte Carlo Localization(MCL).

  • PDF

Multi-Robot Localization based on Bayesian Multidimensional Scaling

  • Je, Hong-Mo;Kim, Dai-Jin
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.357-361
    • /
    • 2007
  • This paper presents a multi-robot localization based on Bayesian Multidimensional Scaling (BMDS). We propose a robust MDS to handle both the incomplete and noisy data, which is applied to solve the multi-robot localization problem. To deal with the incomplete data, we use the Nystr${\ddot{o}}$m approximation which approximates the full distance matrix. To deal with the uncertainty, we formulate a Bayesian framework for MDS which finds the posterior of coordinates of objects by means of statistical inference. We not only verify the performance of MDS-based multi-robot localization by computer simulations, but also implement a real world localization of multi-robot team. Using extensive empirical results, we show that the accuracy of the proposed method is almost similar to that of Monte Carlo Localization(MCL).

  • PDF

Multi-Robot Localization based on Distance Mapping (거리매칭에 기반한 다수로봇 위치추정)

  • Je, Hong-Mo;Kim, Jung-Tae;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.433-438
    • /
    • 2007
  • This paper presents a distance mapping-based localization method with incomplete data which means partially observed data. We make three contributions. First, we propose the use of Multi Dimensional Scaling (MDS) for multi-robot localization. Second, we formulate the problem to accomodate partial observations common in multi-robot settings. We solve the resulting optimization problem using #Scaling by Majorizing a Complicated function (SMACOF)#, a popular algorithm fur iterative MDS. Third, we not only verify the performance of MDS-based multi-robot localization by computer simulations, but also implement a real world localization of multi-robot team. Using extensive empirical results, we show that the accuracy of the proposed method is almost similar to that of Monte Carlo Localization(MCL).

  • PDF

EKF based Mobile Robot Indoor Localization using Pattern Matching (패턴 매칭을 이용한 EKF 기반 이동 로봇 실내 위치 추정)

  • Kim, Seok-Young;Lee, Ji-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.1
    • /
    • pp.45-56
    • /
    • 2012
  • This paper proposes how to improve the performance of CSS-based indoor localization system. CSS based localization utilizes signal flight time between anchors and tag to estimate distance. From the distances, the 3-dimensional position is calculated through trilateration. However the error in distance caused from multi-path effect transfers to the position error especially in indoor environment. This paper handles a problem of reducing error in raw distance information. And, we propose the new localization method by pattern matching instead of the conventional localization method based on trilateration that is affected heavily on multi-path error. The pattern matching method estimates the position by using the fact that the measured data of near positions possesses a high similarity. In order to gain better performance of localization, we use EKF(Extended Kalman Filter) to fuse the result of CSS based localization and robot model.

Localization of Mobile Robot Using Multi IR Range Sensors (다중 IR 거리센서를 이용한 이동로봇의 자기위치 인식)

  • Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.6
    • /
    • pp.744-748
    • /
    • 2007
  • In this paper, a new localization method of indoor mobile robot using multi IR(infrared) range sensors is proposed. Each IR range sensor detects the edge of obstacles and wall using the acquired range data. The environment map is built by the merging process of the detected edge data of each sensor. The performance of proposed system is verified by the comparison of the real environment and the detected map in experiments.

Localization Error Recovery Based on Bias Estimation (바이어스추정을 기반으로 한 위치추정의 오차회복)

  • Kim, Yong-Shik;Lee, Jae-Hoon;Kim, Bong-Keun;Ohba, Kohtaro;Ohya, Akihisa
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.112-120
    • /
    • 2009
  • In this paper, a localization error recoverymethod based on bias estimation is provided for outdoor localization of mobile robot using different-type sensors. In the previous data integration method with DGPS, it is difficult to localize mobile robot due to multi-path phenomena of DGPS. In this paper, fault data due to multi-path phenomena can be recovered by bias estimation. The proposed data integration method uses a Kalman filter based estimator taking into account a bias estimator and a free-bias estimator. A performance evaluation is shown through an outdoor experiment using mobile robot.

  • PDF

A Study for Path Tracking of Vehicle Robot Using Ultrasonic Positioning System (초음파 위치 센서를 이용한 차량 로봇의 경로 추종에 관한 연구)

  • Yoon, Suk-Min;Yeu, Tae-Kyeong;Park, Soung-Jea;Hong, Sup;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.795-800
    • /
    • 2008
  • The paper presents research for the established experiment environment of multi vehicle robot, localization algorithm that is based on vehicle control, and path tracking. The established experiment environment consists of ultrasonic positioning system, vehicle robot, server and wireless module. Ultrasonic positioning system measures positioning for using ultrasonic sensor and generates many errors because of the influence of environment such as a reflection of wall. For a solution of this fact, localization algorithm is proposed to determine a location using vehicle kinematics and selection of a reliable location data. And path tracking algorithm is proposed to apply localization algorithm and LOS, finally, that algorithms are verified via simulation and experimental

  • PDF

Multi-Attitude Heading Reference System-based Motion-Tracking and Localization of a Person/Walking Robot (다중 자세방위기준장치 기반 사람/보행로봇의 동작추적 및 위치추정)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.66-73
    • /
    • 2016
  • An Inertial Measurement Unit (IMU)-based Attitude and Heading Reference System (AHRS) can calculate attitude and heading information with long-term accuracy and stability by combining gyro, accelerometer, and magnetic compass signals. Motivated by this characteristic of the AHRS, this paper presents a Motion-Tracking and Localization (MTL) method for a person or walking robot using multi-AHRSs. Five AHRSs are attached to the two calves, two thighs, and waist of a person/walking robot. Joints, links, and coordinate frames are defined on the body. The outputs of the AHRSs are integrated with link data. In addition, a supporting foot is distinguished from a moving foot. With this information, the locations of the joints on the local coordinate frame are calculated. The experimental results show that the presented MTL method can track the motion of and localize a person/walking robot with long-term accuracy in an infra-less environment.

Simultaneous Localization and Mobile Robot Navigation using a Sensor Network

  • Jin Tae-Seok;Bashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.161-166
    • /
    • 2006
  • Localization of mobile agent within a sensing network is a fundamental requirement for many applications, using networked navigating systems such as the sonar-sensing system or the visual-sensing system. To fully utilize the strengths of both the sonar and visual sensing systems, This paper describes a networked sensor-based navigation method in an indoor environment for an autonomous mobile robot which can navigate and avoid obstacle. In this method, the self-localization of the robot is done with a model-based vision system using networked sensors, and nonstop navigation is realized by a Kalman filter-based STSF(Space and Time Sensor Fusion) method. Stationary obstacles and moving obstacles are avoided with networked sensor data such as CCD camera and sonar ring. We will report on experiments in a hallway using the Pioneer-DX robot. In addition to that, the localization has inevitable uncertainties in the features and in the robot position estimation. Kalman filter scheme is used for the estimation of the mobile robot localization. And Extensive experiments with a robot and a sensor network confirm the validity of the approach.

An Efficient Outdoor Localization Method Using Multi-Sensor Fusion for Car-Like Robots (다중 센서 융합을 사용한 자동차형 로봇의 효율적인 실외 지역 위치 추정 방법)

  • Bae, Sang-Hoon;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.995-1005
    • /
    • 2011
  • An efficient outdoor local localization method is suggested using multi-sensor fusion with MU-EKF (Multi-Update Extended Kalman Filter) for car-like mobile robots. In outdoor environments, where mobile robots are used for explorations or military services, accurate localization with multiple sensors is indispensable. In this paper, multi-sensor fusion outdoor local localization algorithm is proposed, which fuses sensor data from LRF (Laser Range Finder), Encoder, and GPS. First, encoder data is used for the prediction stage of MU-EKF. Then the LRF data obtained by scanning the environment is used to extract objects, and estimates the robot position and orientation by mapping with map objects, as the first update stage of MU-EKF. This estimation is finally fused with GPS as the second update stage of MU-EKF. This MU-EKF algorithm can also fuse more than three sensor data efficiently even with different sensor data sampling periods, and ensures high accuracy in localization. The validity of the proposed algorithm is revealed via experiments.