• Title/Summary/Keyword: Multi-Port Receiver

Search Result 22, Processing Time 0.019 seconds

Six-port direct conversion receiver front-end with carrier recovery circuit and phase shifter using multi-layer coupled line (다층형 결합 선로를 이용한 반송파복원기와 위상 변위기를 갖는 6-단자 직접 변환 수신 전처리부)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2267-2272
    • /
    • 2009
  • The six-port direct conversion receiver front-end that is comprised of a carrier recovery and a phase shifter, which gets the same structure with six-port phase correlator using the multi-layer coupled line, was designed and fabricated in this paper. The six-port element that is comprised of the power divider and the hybrid coupler is designed by multi-layer coupled line structure. The multi-coupled structure is utilized as the basic structure in receiver phase correlator, carrier recovery circuit and phase shifter. The receiver front-end with the same multi-layer coupled line structure for the receiver elements shows the simple structure and no difficulty in integration. The fabricated multi-layer coupled six-port receiver front-end re-generates the carrier signal with a constant phase and demodulates the PSK transmission signal.

Design of K-Band CMOS Four-Port Direct Conversion Receiver for BPSK Demodulation (BPSK 복조를 위한 K-Band CMOS Four-Port 직접 변환 수신기 설계)

  • Moon, Seong-Mo;Park, Dong-Hoon;Yu, Jong-Won;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • In this paper, we propose and demonstrate a new four-port BPSK direct conversion receiver based on $0.18\;{\mu}m$ CMOS technology for K-band applications. The proposed direct conversion receiver is composed of two active combiners, an lumped LC balun, two power detectors and an analog decode. The designed direct conversion receiver is successfully demodulated BPSK signal with 40 Mbps in the K-band.

Real-time Implementation of a Tone Sender/Receiver on a High Performance DSP (고성능 DSP를 이용한 톤 송수신기의 실시간 구현)

  • 최용수;함정표;조성범;강태익;윤정현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.276-285
    • /
    • 2003
  • In this paper, we present real-time implementation of a R2MFC/DTMF (R2 Multi Frequency Combinations/Dual Tone Multiple Frequency) tone receiver/sender using a high performance DSP (Digital Signal Processor) and apply it to a carrier class VoIP (Voice over Internet Protocol) gateway system. The Receiver utilizes the Goertzel filter and the sender adopts the harmonic resonant filter. We describe, in detail, the techniques of multi-channel real-time implementation on a Texas Instruments TMS320C62x DSP such as effective PCM (Pulse Code Modulation) in/out by means of DMA (Direct Memory Access) and McBSP (Multi Channel Buffered Serial Port) and message communication via HPI (Host Port Interface), etc. From experimental results, we confirmed that the optimized code provided 780 channel capacity at 250㎒ C6202, and the our R2MFC/DTMF receiver/sender met ITU-T (International Telecommunication Union-Telecommunication) specifications.

Dual-Band Six-Port Direct Conversion Receiver with I/Q Mismatch Calibration Scheme for Software Defined Radio (Software Defined Radio를 위한 I/Q 부정합 보정 기능을 갖는 이중 대역 Six-Port 직접변환 수신기)

  • Moon, Seong-Mo;Park, Dong-Hoon;Yu, Jong-Won;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.651-659
    • /
    • 2010
  • In this paper, a new six-port direct conversion receiver for high-speed multi-band multi-mode wireless communication system such as software defined radio(SDR) is proposed. The designed receiver is composed of two CMOS four-port BPSK receivers and a dual-band one-stage polyphase filter for quadrature LO signal generation. The four-port BPSK receiver, implemented in 0.18 ${\mu}m$ CMOS technology for the first time in microwave-band, is composed of two active combiners, an active balun, two power detector, and an analog decoder. The proposed polyphase filter adopt type-I architecture, one-stage for reduction of the local oscillator power loss, and LC resonance structure instead of using capacitor for dual-band operation. In order to extent the operation RF bandwidth of the proposed six-port receiver, we include I/Q phase and amplitude calibration scheme in the six-port junction and the power detector. The calibration range of the phase and amplitude mismatch in the proposed calibration scheme is 8 degree and 14 dB, respectively. The validity of the designed six-port receiver is successfully demonstrated by modulating M-QAM, and M-PSK signal with 40 Msps in the two-band of 900 MHz and 2.4 GHz.

Design and Applications of a Generalized Software-Based GNSS IF Signal Generator

  • Lim, Deok-Won;Park, Chan-Sik;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.211-215
    • /
    • 2006
  • In this paper, design and applications of a generalized, versatile and customizable IF signal generator that can model the modernized GPS and Galileo signal is given. It generates IF sampled data that can be directly used by a software receiver. Entire constellation of satellites which is independent of satellite-user geometry is easily determined using a real or simulated ephemeris data. Since the IF center frequency, sampling frequency and quantization bit number are user location dependent parameters, their effects are also considered in IF signal generator. The generalized IF signal generator will be very well suited for the development phase of a software receiver due to its versatility. The full access to the sampling frequency, front-end filter definition and ADC parameters also offers a great opportunity for cost-effective analysis of tracking loops and error mitigation techniques at the receiver level. Interference sources can be easily added to the generator to simulate specific environments. This software IF signal generator can also be used to feed a multi-frequency multi-system software receiver for the prototyping of a combined GPS/Galileo receiver. The test result using the generated signals and a real software receiver shows the effectiveness of the implemented IF signal generator.

  • PDF

GPS Data Application of the KOMPSAT-2

  • Chung, Dae-Won;Kwon, Ki-Ho;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.337-342
    • /
    • 2006
  • The use of GPS receiver at outer space becomes common in low earth orbit. The KOrea Multi-Purpose SATellite-1 (KOMPSAT-1) which was launched in December 1999 has used GPS receiver's navigation solution to perform the Orbit Determination (OD) in the ground. At the circumstance of using only one ground station, the Orbit Determination using GPS receiver is good method. Because the accuracy of navigation solution acquiring directly from GPS receiver is not enough in satellite application such as map generation, post-processing concepts such as the Precise Orbit Determination (POD) are applied to satellite data processing to improve satellite position accuracy. The POD uses GPS receiver's raw measurement data instead of GPS receiver's navigation solution. The KOrea Multi- Purpose SATellite-2 (KOMPSAT-2) system newly uses the POD technique for large scale map generation. The satellite was launched in the end of July 2006. The satellite sends high resolution images in panchromatic band and multi-spectral bands to the ground. The satellite system uses GPS receivers as source of time synchronization and command reference in the satellite, provider of navigation solution for the OD, and provider of raw measurement data for the POD. In this paper, mechanical configuration and operations of the GPS receiver will be presented. The GPS data characteristics of the satellite such as time synchronization, command reference, the OD using GPS receiver's navigation solution, and the POD using GPS receiver's raw measurement data will be presented and analyzed. The enhancement of performance compared with it of the previous satellite will also be analyzed.

  • PDF

A Study on Multi-Bit Processing Scheme of GPS Receiver for Fail-Safe Seaway (Fail-Safe Seaway를 위한 GPS 수신기의 다중비트처리기법 연구)

  • Cho Deuk-Jae;Oh Se-Woong;Suh Sang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.877-882
    • /
    • 2005
  • It is necessary that Fail-Safe Seaway technology providing a continuous navigation solution though fault of navigation system is occurred in sea. This paper focus on signal processing of GPS receiver, one of receivers using the software radio technology to implement a integrated radio navigation system including satellite-based and ground-based navigation systems. It is difficult to implement the software GPS receivers using a commercial processor because of the heavy computational burden for processing the GPS signals in real time. This paper proposes an efficient multi-bit GPS signal processing scheme to reduce the computational burden for processing the GPS signals in the software GPS receiver. The proposed scheme uses a compression concept of the multi-bit replica signals and patterned look-up table method to generate the correlation value between the GPS signals and the replica signals.

A Study on Multi-Bit Processing Scheme of GPS Receiver for Fail-Safe Seaway (Fail-Safe Seaway를 위한 GPS 수신기의 다중비트처리기법 연구)

  • Cho Deuk-Jae;Oh Se-Woong;Suh Sang-Hyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.37-42
    • /
    • 2005
  • It is necessary that Fail-Safe Seaway technology providing a continuous navigation solution though fault of navigation system is occurred in sea. This paper focus on signal processing of GPS receiver, one of receivers using the software radio technology to implement a integrated radio navigation system including satellite-based and ground-based navigation systems. It is difficult to implement the software GPS receivers using a commercial processor bemuse of the heavy computational burden for processing the GPS signals in real time. This paper proposes an efficient multi-bit GPS signal processing scheme to reduce the computational burden for processing the GPS signals in the software GPS receiver. The proposed scheme uses a compression concept of the multi-bit replica signals and patterned look-up table method to generate the correlation value between the GPS signals and the replica signals.

  • PDF

Design of QPSK Demodulator Using CMOS BPSK Receiver and Reflection-Type Phase Shifter (CMOS 기반 BPSK 수신기와 반사형 위상 천이기를 이용한 QPSK 복조기 설계)

  • Moon, Seong-Mo;Park, Dong-Hoon;Yu, Jong-Won;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.770-776
    • /
    • 2009
  • We propose and demonstrate an I/Q demodulator using four-port BPSK demodulator base on additive mixing and reflection-type phase shifter using hybrid technique. Previously, the conventional I/Q demodulator base on multiplicative or additive mixing method divides I/Q signal path from mixer to parallel-to-serial converter. In this paper, we propose new I/Q demodulator without dividing I/Q baseband signal path. The proposed schematic requires half size in implementation and half power consumption in baseband path compared with the conventional receiver. Also, the proposed receiver eliminates parallel-to-serial converter after data decoding. The proposed circuit has been successfully demodulated a QPSK signal with the L-band carrier frequency and 20 Mbps data rate.

I/Q channel regeneration in 6-port junction based direct receiver (직접 변환 수신기를 위한 Six Port에서의 I와 Q채널의 생성)

  • Kim Seayoung;Kim Nak-Myeong;Kim Young-Wan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.6 s.324
    • /
    • pp.1-7
    • /
    • 2004
  • The development of direct receiver techniques is expected to be a solution for future wideband or multi-band wireless systems based on software defined radio. In this Paper, we study the regeneration of I and Q signals for the SDR based direct conversion receiver, so that we can handle a wide bandwidth and maintain maximal flexibility in system utilization. After modeling the basic system considering the real wireless communication environment, and studying the impact of imperfect phase imbalance on the performance of a direct conversion receiver, we propose a suboptimal I and Q signal regeneration algorithm for the system. The proposed algerian regenerates I and Q signals using a real time early-late compensator which effectively estimates phase imbalances and gives feedback in a directreceiver. The proposed algorithm is shown to mitigate the impact of AWGN and improves performance especially at low SNR channel condition. According to the computer simulation, the BER performance of the proposed system is at least about 4 dB better than conventional systems under $45{\~}55$ degrees random phase errors.