• Title/Summary/Keyword: Multi-Point Contact

Search Result 63, Processing Time 0.024 seconds

Determination of Optimal Contact Forces for Multi-Jointed, Multi-Fingered Robotic Hand Considering Contacts of Inner Links (손마디 접촉을 고려한 다지 다관절 로봇손의 최적 접촉력 결정 방법)

  • 백주현;정낙영;서일홍;최동훈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.8
    • /
    • pp.825-835
    • /
    • 1991
  • This paper deals with a case for robotic hands to grasp the objects using inner link contact as well as fingertip contact. And the case is proved to be more efficient than the case of using only fingertip contact in terms of stability and uniform distribution of the contact forces. The general algorithm for the determination of the optimal ocntact force is developed for the soft finger contact as well as the point contact with friction. To show the validity of the proposed algorithm a numerical example is illustated by employing a robotic hand with three fingers each of which has four joints.

A Study on Three-Dimensional Motion Tracking Technique for Floating Structures Using Digital Image Processing (디지털 화상처리를 이용한 부유식 구조물의 3차원운동 계측법에 관한 연구)

  • Jo, Hyo-Je;Do, Deok-Hui
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.121-129
    • /
    • 1998
  • A quantitative non-contact multi-point measurement system is proposed to the measurement of three-dimensional movement of floating vessels by using digital image processing. The instantaneous three-dimensional movement of a floating structure which is floating in a small water tank is measured by this system and its three-dimensional movement is reconstructed by the measurement results. The validity of this system is verified by position identification for spatially distributed known positional values of basic landmarks set for the camera calibration. It is expected that this system is applicable to the non-contact measurement for an unsteady physical phenomenon especially for the measurement of three-dimensional movement of floating vessels in the laboratory model test.

  • PDF

Kinematics of Grasping and Manipulation of Curved Surface Object with Robotic Hand (로봇 손에 의한 자유곡면 물체의 파지 및 조작에 관한 운동학)

  • Hwang Chang-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.1-13
    • /
    • 2005
  • Kinematics of grasping and manipulation by a multi-fingered robotic hand where multi-fingertip surfaces are in contact with an object is solved. The surface of the object was represented by B-spline surfaces in order to model the objects of various shapes. The fingers were modeled by cylindrical links and a half ellipsoid fingertip. Geometric equations of contact locations have been solved for all possible contact combinations between the fingertip surface and the object. The simulation system calculated joint displacements and contact locations for a given trajectory of the object. Since there are no closed form solutions for contact or intersection between these surfaces, kinematics of grasping was solved by recursive numerical calculation. The initial estimate of the contact point was obtained by approximating the B-spline surface to a polyhedron. As for the simulation of manipulation, exact contact locations were updated by solving the contact equations according to the given contact states such as pure rolling, twist-rolling or slide-twist-rolling. Several simulation examples of grasping and manipulation are presented.

Multisensor System Integrating Optical Tactile and F/T Sensors for Determination of Type and Position of 3D Contact Surface (3차원 접촉면의 인식 및 위치의 결정의 위한 광촉각센서와 역각센서의 다중센서시스템)

  • 한헌수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.10-19
    • /
    • 1996
  • This paper presents a finger-shaped multisensor system which can measure the tyep and position of a target surface by contactl. The multi-sensor system consists of a sphere-shpaed optical tactile sensor located at the finger tip and a force/torque sensor located at the joint of a finger. The optial tactile sensor determines the type and position of the target surface using the shape and position of the CCD image of the touching area generated by a contact between the sensor and the taget surface. The force/torque sensor also determines the position and surface normal vector by applying the distributionof forces and torques t the contact point to the equations of finger shape. The measurements on the position and surface normal vector at a contact point obtined by two individual sensors are fused using a statistical method. The integrated sensor system has 0.8mm error in position measurement and 1.31$^{\circ}$ error in normal vector measurement. The developed sensor system has many applications, such as autonomous compliance control, automatic grasping and recognition, etc.

  • PDF

Study on Application of Multi-point Dieless Forming for Shipbuilding (다점 무금형 성형의 조선 적용 연구)

  • Ha S. M.;Shin J. W.;Han Y. S.;Han M. S.;Choe W. H.;Lee H. W.;Park J. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.152-155
    • /
    • 2005
  • A method of three-dimensional curved surface generation was studied for multi-point dieless forming (MPDF) in the shipbuilding industry. Three-dimensional coordinates of punch elements were obtained from objective surfaces using a proprietary CAD program. MPDF surfaces were generated by adjusting the height of punch elements in accordance with the coordinates. Some problems, such as collision of punch elements and contact between plates and punch bodies, were anticipated from the analysis of the results. A twisted surface was formed successfully by MPDF in a laboratory scale, which suggests possibility of application of the technology to the shipbuilding industry.

  • PDF

Numerical Study on Forming Characteristics of Hot Multi-Point Forming Die (수치해석을 이용한 열간 가변금형 성형특성 평가)

  • Lee, I.K.;Lee, S.Y.;Jeong, M.S.;Kim, B.M.;Lee, S.K.
    • Transactions of Materials Processing
    • /
    • v.27 no.4
    • /
    • pp.236-243
    • /
    • 2018
  • A multi-point forming die (MPFD), which has been used for producing curved plates, is capable of forming various curved plates with just one MPFD. However, in real industries, an MPFD is difficult to be adopted since the structural properties, punch strength, elastic recovery correction and dimensional accuracy become problems. In order to overcome these problems, the hot multi-point forming die (HMPFD) was proposed in this study. This HMPFD commonly provide more less spring-back and forming load than conventional MPFD. Nevertheless, this process is very difficult to form the curved plate, because the final curved shape of the plate depends on many process variables such as the punch/nozzle arrangement (height and distance), the radius of punch, contact conditions between plate and punch. In this study, the forming characteristics of HMPFD and conventional MPFD are compared with each other through the finite element analysis.

Interface slip of post-tensioned concrete beams with stage construction: Experimental and FE study

  • Low, Hin Foo;Kong, Sih Ying;Kong, Daniel;Paul, Suvash Chandra
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.173-183
    • /
    • 2019
  • This study presents experimental and numerical results of prestressed concrete composite beams with different casting and stressing sequence. The beams were tested under three-point bending and it was found that prestressed concrete composite beams could not achieve monolith behavior due to interface slippage between two layers. The initial stress distribution due to different construction sequence has little effect on the maximum load of composite beams. The multi-step FE analyses could simulate different casting and stressing sequence thus correctly capturing the initial stress distribution induced by staged construction. Three contact algorithms were considered for interaction between concrete layers in the FE models namely tie constraint, cohesive contact and surface-to-surface contact. It was found that both cohesive contact and surface-to-surface contact could simulate the interface slip even though each algorithm considers different shear transfer mechanism. The use of surface-to-surface contact for beams with more than 2 layers of concrete is not recommended as it underestimates the maximum load in this study.

A Study on the Fracture Detection of Multi-Point-Tool (다인공구의 파손검출에 관한 연구)

  • Choi, Young Kyu;Ryu, Bong Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.67-77
    • /
    • 1995
  • In modern industry the requirement of automation of manufacturing process increases so that unmanned system has been popular as an ultimate goal of modern manufacturing process. In unmanned manufacturing process the tool fracture is a very serious problem because it results in the damage of workpieces and can stop the operation of whole manufa- turing system. In this study, image processing technique is used to detect the fracture of insert tip of face milling using multi-point-tool. In order to acquire the image information of fracture shape of rotation insert tip. We set up the optical system using a light beam chopper. In this system we can reduce the image degradation generated from stopped image of rotating insert tip using image restoration technique. We calculated the mean square error to diagnose the condition of tool fracture, and determind the criteria of tool fracture using experimental and staticstical method. From the results of this study we've developed non- contact detection technique of tool fracture using image processing method and proposed the fracture direction of automation and unmanned system considering the optimal time of tool change milling.

  • PDF

A Study on the Prediction System of Block Matching Rework Time (블록 정합 재작업 시수 예측 시스템에 관한 연구)

  • Jang, Moon-Seuk;Ruy, Won-Sun;Park, Chang-Kyu;Kim, Deok-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.66-74
    • /
    • 2018
  • In order to evaluate the precision degree of the blocks on the dock, the shipyards recently started to use the point cloud approaches using the 3D scanners. However, they hesitate to use it due to the limited time, cost, and elaborative effects for the post-works. Although it is somewhat traditional instead, they have still used the electro-optical wave devices which have a characteristic of having less dense point set (usually 1 point per meter) around the contact section of two blocks. This paper tried to expand the usage of point sets. Our approach can estimate the rework time to weld between the Pre-Erected(PE) Block and Erected(ER) block as well as the precision of block construction. In detail, two algorithms were applied to increase the efficiency of estimation process. The first one is K-mean clustering algorithm which is used to separate only the related contact point set from others not related with welding sections. The second one is the Concave hull algorithm which also separates the inner point of the contact section used for the delayed outfitting and stiffeners section, and constructs the concave outline of contact section as the primary objects to estimate the rework time of welding. The main purpose of this paper is that the rework cost for welding is able to be obtained easily and precisely with the defective point set. The point set on the blocks' outline are challenging to get the approximated mathematical curves, owing to the lots of orthogonal parts and lack of number of point. To solve this problems we compared the Radial based function-Multi-Layer(RBF-ML) and Akima interpolation method. Collecting the proposed methods, the paper suggested the noble point matching method for minimizing the rework time of block-welding on the dock, differently the previous approach which had paid the attention of only the degree of accuracy.

A Study on the Detection Technique of the Flame and Series arc by Poor Contact (접촉 불량에 의한 불꽃 및 직렬아크의 검출 기법에 관한 연구)

  • Woo, Kim Hyun;Hyun, Baek Dong
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.24-30
    • /
    • 2012
  • This study is on the method of the detection for flame and series arc which can be happened at poor contact point added a vibration in part of contact point of low voltage line. In general, the causes of electric fire are over current, short circuit, poor contact, ect. The over-current or short circuit among those causes is detected by measuring a instant current value, but poor contact is difficult to detect by measuring a excessive value of the voltage and current and a distortion of waveforms. And therefore, in this paper, it is studied on the optimal technique of the arc judgement using fuzzy logic and MDET (Multi Dimension Estimation Technique). And it carries out the simulation for arc detection and the experiment for controller and load test. In result, the controller and detection algoristhm, is classified with normal wave and abnormal arc wave without relation with each loads and so the controller can detect a series arc successfully.