• 제목/요약/키워드: Multi-Objective function

검색결과 447건 처리시간 0.025초

수요와 조도계수의 불확실성을 고려한 상수도관망의 최적설계 (Optimal Design of Water Distribution System considering the Uncertainties on the Demands and Roughness Coefficients)

  • 정동휘;정건희;김중훈
    • 한국방재학회 논문집
    • /
    • 제10권1호
    • /
    • pp.73-80
    • /
    • 2010
  • 상수도관망의 최적설계는 단목적함수와 고정된 수리학적 변수로 구성된 비용최소화의 문제로 시작되었다. 하지만, 미래의 불확실한 수요량의 변동과 같이 상수도관망 내에 존재하는 여러 불확실성을 고려하여 설계하는 것이 실제 상수도관망의 거동을 보다 적절히 예측하는 것이다. 따라서 상수도관망 내 존재하는 불확실성을 양적으로 고려하는 다양한 방법이 연구되어 상수도관망의 최적설계에 반영되었고, 다목적함수를 사용한 최적화문제도 다루게 되었다. 본 연구에서는 관망의 절점에서의 수요량과 관의 조도계수를 불확실성을 가진 변수로 두고, 비용 최소화와 관망의 강건성 (Robustness)을 최대화 하는 두 가지 목적함수를 가진 다목적함수 최적화 문제를 다루었다. 최적화 과정은 비용최소화와 불확실성을 고려한 최종 최적화의 두 과정으로 나뉜다. 각 절점에서의 수요량과 관의 조도계수는 베타확률밀도함수 (Beta PDF)를 사용, Latin Hypercube 샘플링 방법으로 불확실성을 고려하였고, 다목적함수의 최적화는 유전자 알고리듬 (Multi-objective Genetic Algorithms, MOGA)을 사용하였다. 제안된 방법은 New York Tunnels이라는 실제 상수도관망에 적용하여 적용성을 검증 하였고 그 결과를 분석하였다. 다목적 최적화 문제에서 최적화가 진행될 수 록 초기 값에 모여 있던 점들이 그 점 주위를 시작으로 해 공간에 최적 해를 찾아 오른쪽 아래 부분으로 탐색해 나가는 것을 확인할 수 있었고 최적설계의 해는 해 공간에서 Pareto Front를 구성하며 파레토 최적해를 구하였다.

IMPROVEMENT OF RIDE AND HANDLING CHARACTERISTICS USING MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES

  • KIM W. Y.;KIM D. K.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.141-148
    • /
    • 2005
  • In order to reduce the time and costs of improving the performance of vehicle suspensions, the techniques for optimizing damping and air spring characteristic were proposed. A full vehicle model for a bus is constructed with a car body, front and rear suspension linkages, air springs, dampers, tires, and a steering system. An air spring and a damper are modeled with nonlinear characteristics using experimental data and a curve fitting technique. The objective function for ride quality is WRMS (Weighted RMS) of the power spectral density of the vertical acceleration at the driver's seat, middle seat and rear seat. The objective function for handling performance is the RMS (Root Mean Squares) of the roll angle, roll rate, yaw rate, and lateral acceleration at the center of gravity of a body during a lane change. The design variables are determined by damping coefficients, damping exponents and curve fitting parameters of air spring characteristic curves. The Taguchi method is used in order to investigate sensitivity of design variables. Since ride and handling performances are mutually conflicting characteristics, the validity of the developed optimum design procedure is demonstrated by comparing the trends of ride and handling performance indices with respect to the ratio of weighting factors. The global criterion method is proposed to obtain the solution of multi-objective optimization problem.

다품목(多品目) 생산체제(生産體制)의 생산계획(生産計劃)을 위한 모델 (A Model for Production Planning in a Multi-item Production System -Multi-item Parametric Decision Rule-)

  • 최병규
    • 대한산업공학회지
    • /
    • 제1권2호
    • /
    • pp.27-38
    • /
    • 1975
  • This paper explores a quantitative decision-making system for planning production, inventories and work-force in a multi-item production system. The Multi-item Parametric Decision Rule (MPDR) model, which assumes the existence of two types of linear feed-back rules, one for work-force level and one for production rates, is basically an extension of the existing method of Parametric Production Planning (PPP) proposed by C.H. Jones. The MPDR model, however, explicitly considers the effect of manufacturing progress and other factors such as employee turn-over, difference in work-days between month etc., and it also provides decision rules for production rates of individual items. First, the cost relations of the production system are estimated in terms of mathematical functions, and then decision rules for work-force level and production rates of individual items are establised based upon the estimated objective cost function. Finally, a direct search technique is used to find a set of parameters which minimizes the total cost of the objective function over a specified planning horizon, given estimates of future demands and initial values of inventories and work-force level. As a case problem, a hypothetical decision rule is developed for a particular firm (truck assembly factory).

  • PDF

Determination of Optimal Build Orientation Based on Satisfactory Degree Theory for RPT

  • Zhao, Jibin;Liu, Weijun;Wu, Jianhuang
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.51-58
    • /
    • 2006
  • In rapid prototyping, the optimal part orientation during fabrication is critical as it can improve part accuracy, minimize the requirement for supports and reduce the production time. Through investigating the geometric issues of STL model and process planning of RPM, This paper establishes optimizing model based on the considerations of staircase effect, support area and production time. The general satisfactory degree function is constructed employing the multi-objective optimization theory based on the general satisfactory degree principle. The best part-building orientation is obtained by solving the function employing generic algorithm. Experiment shows that the methods can effective resolve the part-building orientation in RP.

다품종(多品種) 연속점검(連續點檢) 재고관리(在庫管理)모델의 최적해법(最適解法) (Approximate Decision Rules for Multi-Item Continuous Review Inventory Model)

  • 강동진;이상용
    • 품질경영학회지
    • /
    • 제13권1호
    • /
    • pp.56-64
    • /
    • 1985
  • This paper presents a general algorithm of multi-item continuous review models to obtain simultaneous solutions for ordering quantities and reorder points for each item in an inventory, while satisfying constraints on average inventory investment and reordering workload. Two models are formulated'in each model the heuristic method is utilized, and the partial back-logging is considered. In the first model, the objective function is the minimization of total inventory variable cost. In the second model, the objective function is the minimization of total time-weighted shortages, and the ordering, holding, and stockout costs in this model are independent each other. A numerical example is also solved to present application of each model.

  • PDF

차량 엔진동력계의 마운트 설계에 관한 연구 (An Investigation of the Mount Design of Engine Power System in Vehicles)

  • 박노길
    • 한국자동차공학회논문집
    • /
    • 제4권1호
    • /
    • pp.36-54
    • /
    • 1996
  • This paper presents a design procedure of engine power system for vehicle. The implementation and operation environment of engine plant is somewhat diversed through the various kind of vehicles. Regarding this point, we adopt a multi-purposed design objective function which can be easily modified to reflect diverse mount design rules which have been recommended and used generally by relating fields. To search the mount parameters which provide the optimal performance, a direct search method based on an orthogonal array is developed and applied. Through several simulated results, the effectiveness of the developed disign tool is investigated and discussed.

  • PDF

A Study on the Multi-Objective Optimization of Impeller for High-Power Centrifugal Compressor

  • Kang, Hyun-Su;Kim, Youn-Jea
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권2호
    • /
    • pp.143-149
    • /
    • 2016
  • In this study, a method for the multi-objective optimization of an impeller for a centrifugal compressor using fluid-structure interaction (FSI) and response surface method (RSM) was proposed. Numerical simulation was conducted using ANSYS CFX and Mechanical with various configurations of impeller geometry. Each design parameter was divided into 3 levels. A total of 15 design points were planned using Box-Behnken design, which is one of the design of experiment (DOE) techniques. Response surfaces based on the results of the DOE were used to find the optimal shape of the impeller. Two objective functions, isentropic efficiency and equivalent stress were selected. Each objective function is an important factor of aerodynamic performance and structural safety. The entire process of optimization was conducted using the ANSYS Design Xplorer (DX). The trade-off between the two objectives was analyzed in the light of Pareto-optimal solutions. Through the optimization, the structural safety and aerodynamic performance of the centrifugal compressor were increased.

Multi-Objective Stochastic Optimization in Water Resources System

  • Shim, Soon Bo
    • 한국경영과학회지
    • /
    • 제8권1호
    • /
    • pp.41-59
    • /
    • 1983
  • The purpose of this paper is to present a method of multi-objective, stochastic optimization in water resources system which investigates the development of potential non-normal deterministic equivalents for subsequent use in multiobjective stochastic programming methods, Given probability statement involving a function of several random variables, it is often possible to obtain a deterministic equivalent of it that does not include any orginal random variables. A Stochastic trade-off technique-MSTOT is suggested to help a decision maker achieve satisfactory levels for several objective functions. This makes use of deterministic equivalents to handle random variables in the objective functions. The emphasis is in the development of non-normal deterministic equivalents for use in multiobjective stochastic techniques.

  • PDF

다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(II): 선호적 순서화의 적용 (Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (II): Application of Preference Ordering)

  • 구보영;김태순;정일원;배덕효
    • 한국수자원학회논문집
    • /
    • 제40권9호
    • /
    • pp.687-696
    • /
    • 2007
  • 본 연구는 다목적 유전자알고리즘을 이용하여 Tank 모형의 매개변수를 추정하는데 있어서 선호적순서화(preference ordering)를 적용한 연구로써, 목적함수의 개수가 여러 개인 경우에 발생할 수 있는 파레토최적화의 단점을 해결하기 위한 것이다. 최적화를 위한 목적함수는 모두 4가지를 사용하였으며, 선호적순서화를 통해서 구한 2차 효율성(2nd order efficiency)을 가지면서 정도(degree)가 3인 4개의 해 중에서 1개의 해만을 최우선해로 선정하였다. NSGA-II로 도출된 최우선해의 적합성을 살펴보기 위해서, 자동보정방법인 Powell 방법과 SGA(simple genetic algorithm)를 매개변수 자동보정 방법으로 이용하고 하나의 단일목적함수로 사용해서 최적화한 결과와 비교해보았으며, 비교결과 다목적 유전자 알고리즘을 4개의 목적함수에 모두 적용해서 한번에 도출된 매개변수를 이용한 결과가 보정기간뿐만 아니라 검정기간에 대해서도 비교적 양호한 결과를 나타내는 것으로 나타났다.

보수적 근사모델을 적용한 신뢰성 기반 강건 최적설계 방법 (Study of Reliability-Based Robust Design Optimization Using Conservative Approximate Meta-Models)

  • 심형민;송창용;이종수;최하영
    • 한국해양공학회지
    • /
    • 제26권6호
    • /
    • pp.80-85
    • /
    • 2012
  • The methods of robust design optimization (RDO) and reliability-based robust design optimization (RBRDO) were implemented in the present study. RBRDO is an integrated method that accounts for the design robustness of an objective function and for the reliability of constraints. The objective function in RBRDO is expressed in terms of the mean and standard deviation of an original objective function. Thus, a multi-objective formulation is employed. The regressive approximate models are generated via the moving least squares method (MLSM) and constraint-feasible moving least squares method (CF-MLSM), which make it possible to realize the feasibility regardless of the multimodality/nonlinearity of the constraint function during the approximate optimization processes. The regression model based RBRDO is newly devised and its numerical characteristics are explored using the design of an actively controlled ten bar truss structure.