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Abstract

The purpose of this paper is to present a method of multi-objective, stochastic optimiza-
tion in water resources system which investigates the development of potential non-normal
 deterministic equivalents for subsequent use in multiobjective stochastic programming
methods. Given probability statement involving a function of several random variables, it
is often possible to obtain a deterministic equivalent of it that does not include any orginal
random variables.

A Stochastic trade-off technique-MSTOT is suggested to help a decision maker achieve
satisfactory.levels for several objective functions. This makes use of deterministic equival-
ents to handle random variables in the objective functions. The emphasis is in the develo-
pment of non-normal deterministic equivalents for use in multiobjective stochastic techni-
ques.

1. Introduction

This paper presents the subject of continuous random variables in the set of constraints of
a stochastic programming problem, to be satisfied under specified proﬁability limits, and pres-
ents a large class of deterministic equivalents. These deterministic equivalents no longer contain
any of the initial random variables. In the solution Algorithm of the preceding paper, a
deterministic equivalent was introduced for the case of a function of normal random variables.
In this paper the existence of deterministic equivalents is established for function of continuous
random variables with any distribution function.

When the random variables appear in the objective function, the original stochastic problem
can be transformed into an equivalent deterministic problem. Given a probability statement
involving a function of several random variables, it is often possible to obtain a deterministic
equivalent of it that does not include any of the original random variables.

Uncertainty and risks are often formulated as deterministic problems in which the expected
values of the random variables of concern are used. The difficulty with this formulation is
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that it does not allow the decision-maker to see how the levels achieved for the various obje-
ctives vary with the amount of risk he might be willing to take.

These difficulties bave provided the motivation to consider the development of a method
capable of handling risk in the development of objective trade offs, and yet flexible enough
to accomodate the preferences of a decision maker (DM) in a progressive manner in the
analysis. : 1

A Stochastic Trade-off Technique-MSTOT is suggested to help a decision maker achieve
satisfactory levels for several objective functions. This makes use of deterministic equivalents
to handle random variables in the objective functions. The emphasis is in the development of
non-normal deterministic equivalents for use in multiobjective stochastic techniques.

2. Statement of the Problem

To state the research problem, we postulate the existence of a decision situation in which
there are N resources to be allocated so that P satisfactory goal level may be attained. The
main objective is to develop an algorithm which will permit the decision maker(DM) to make
a choice among alternative solutions. The following elements are considered;

1. A vector of objective functions
Z(%) = (2,(%), 22(%), -, 2,(®)), r€X.

Each objective function is defined on a set of resource allocations (the domain) and bas
values in the set of real numbers (the range). These functions may be either linear or nonli-
near, and may contain random parameters. It is required that each objective function be diff-

erentiable.
2. A vector of goal functions denoted G and defined

GC()=(G,(®), G,(2), -, GP(Z)) .................... etesmsereneatateetenrtaastattanstacnnan (1)
Where

(%) — z:min.
z;(x*) =max. z;(x)
z;min. =min. z;(%), i=1,2, -, P.
reX
Each function G is defined on the feasible region X and has values in the interval R(0, 1).
3. A set of constraints defining the feasible region XCR™ and characterized by:;
E equality constraints, g(2) = (g,(¥), g.(®), -, gr(*))=0, where g;(¥) is differentiable, and
either linear or nonlinear;
I inequality constraints, () = (h(¥), h(®), -, h1(¥)) <0, where #;(¥) is differentiable, and
either linear or nonlinear; @ probability constraints of the form
Prob [ri(x, a, -, a)<y1>1—a; i=1,2,--,@ where a;=R[0,1], b<=R*, r;(%,4ay, -, 0a,) is
differentiable and either linear or nonlinear. The parameters a,, a,, ---, @, are random variables,
each with a given probability density function. The functions g, 2, and » are defined on the
set X with values on an arbitrary set S.
4. A preference function U to articulate the “value structure” of the DM.
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This preference function is defined on the set of ranges of the goal functons with values in
the interval R[0,1].

5. An aspiration level for each goal function. This aspiration level is the degree of goal
attainment the DM strives to attain. This set of aspiration levels will attempt to identify a
subset of the nondominated set.

6. Stochastic parameters in both the objective functions and constraints. The random varia-
bles appear in a given objective function, the objective function itself becomes a random
variable and the complexity associated with the task of determining the nondominated set is
increased. The specification of a value for an objective function is no longer sufficient and,
instead one must talk about an achieved value and the probability of achiving that value.

An algorithm is sought, then, to perform a number of sequential tasks and, in the process,
take into account the element presented above. This algorithm should identify the nondomin-
ated set, order the elements in it according to the DM’s preference function, and identify a
subset of the nondominated set which satisfies his aspiration levels. Then, as the DM learns,
reassesses his preference function, and updates his aspiration levels, the algorithm should be
able to redefine the above subset and for each element in it provide probabilities of goal level
achivement.

3. The MSTOT Method; The Algorithm Development

In response to that problem statement, this chapter develops a multiobjective algorithm for
decision making within the framework of stochastic programming to allow the decision maker
to search for alternative solutions.

This multiobjective stochastic trade-off technique, labeled MSTOT, involves the formulation
of an initial surrogate objective function (SOF), the estimation of multiattribute utility function
reflecting the DM'S preferences, the redefinition of the SOF, and the use of a cutting-plane
technique to solve the general nonilnear problem.

In the algorithm itself reference in made to normal random variables.

Using the multiattribute utilty function, weights can be found and used to construct a new
surrogate objective function.

The surrogate problem is solved giving a new solution is presented to the DM in the form
of a vector of goal values and the probability of attaining those values. If the DM is satisfied
the procedure terminates. If not, the least satisfactory objective function and/or probability of
attainment is forced to improve. This is done by constructing a deterministic equivalent
chance constraint and adding it to the constraint set and removing that objective from the
SOF.

The procedure is repeated until a satisfactory solution is found.

In MSTOT, the DM is able to trade the levels of the objective functions and their respective
probabilities of achievement against one another.

There are twelve steps in the MSTOT;

1. Problem definition; A vector of objective functions Z(¥), and a domain D,CR™ of admi-
ssible solutions is given,



Z(®) =(2,(8), 2:(2), -+, 2,(%)), @

D,={x;¥=R", g,(¥)<0,¥>0, Pl (I, P)}, 3
Zi@=% Cy X, i) =EZ(®), @
C=N(ECs), VARC:)), ®)

and the functions g,(x) are differentiable and convex.
2. Range of objective functions. Let X;* be such that

Z;(X:*) =£2%X'Zi(x), t€1(1, q), (6)
and define the following,
Z(%,%)

U= Zz(lfz*) )]
Zq(’—‘.q*)

R={X* icI(1,q)} ®

Ziminzgéiurl Z:i(x) )

3. Initial surrogate objective function. In order that all functions
G;(x) be in [0, 1) let

q
F@O=x G:®, am
Zi = ~--Zimirx
Where G,(Z) = hZ,“E;?*)_:Z;;Q. (11)

4, Initial solution; maximize F(¥),¥<D,. The resulting solution ¥, is then used to generate
an initial, nondominated goal vector G,,

G (%)
Gy (%) 12)

o
I

G, (%)

5. Utility function choice; A multidimensional utility function #(G) is selected to reflect the
DM’s goal utility assessment.
The multi-plicative from

1+ku(Q) = T (1+kkati(GD) (13)

is considered for illustrative purposes. The procedure to determine the parameters %, k; which

is presented in those references, will applied here.

6. Redefinition of the surrogate objective function; A new SOF is defined using results of
Steps 3 and 5 as follows,

Si@ =% WG (19
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e [W©) |
Where W,—1+W[ 0G; ]Qx -

and r is the step size required to yield a new goal vector in the direction of a desired incre-
ment AU (G). Accordingly,

(a) Computer U(G,).

(b) Decide on a value for 0<du(G) <1.

(¢) Solve for the step size r in,

Au(G) =u(G, +rpu(G,) —u(G,). (16)
7. Generation of alternative solution; Maximize S,(%),x<D,.
The resulting solution ¥, is then used to generate vectors G, and U,,

G, (%) Zy (%5)
Q2= Gz(zz) Uz= Zz (Zz) (17)
G,(%,) Z4(%,)

8. Generate Vector V,, which expresses trade-off between goal value and its probability of
" achievement,

(G,(xy), 1—ay)
Vi=| (G(3p), 1—ayp) (18)

(Gq (1‘2) , 1-— aq)

where the element 1—a; is such that,
Prob(Z/ (¥) >Z;(x)) =1 —a;, (19,
or its deterministic equivalent

3 ECi) X+ Ky (XTARY*2Z;(3) 20)

In (30) K, is a standard normal value such that &(K,)=a; and & represents the cumulative
distribution funcion.
The variance-covariance matrtx A is symmetric and positive-definite, and the quadratic form
T Ax is then positive-definite. Accordingly 1—a;<0.5, so for.
9. The DM now poses the following question: “Are all the Z;(x,) values satisfactory?” In the
affirmative case U, represents a desired solution. Otherwise, continue.
10. Select the objective function Z,(x) with the least satisfactory pair (G.(¥,), 1—a;) and
specify ¢,=R*, a,°&R(0, 1), such that
Prob (Z'(x)=er) =>1—ai’. @n
The DM will specify the above if he is not satisfied with either the value achieved for %¢th
goal, G,(%,), or the probability of achieving that value, 1—a, or both.
11. Redefine the solution space; Define the new x-space D, as follows. g,(x) <0, p<I (1, P),



ﬁle(ij)xj+K°m (T AD) 25, 50, (22)
2

From (22) it is seen that DM is now able to trade directly the value of the k-th goal
against the probability of achieving such value, as long as the inequality is satisfied.
12. Generate the new surrogate objective function. S,(¥),

Sy (%) = i Wi G, (2), (23)
ixk

and go back to Step 7 to maximize S,(x) under D,. .
S,(x) will contain one term less since the % th objective function now forms part of D,.

Repeat this sequence until a satisfactory vector V, is achieved.

(e, 1—a)
V,= (e:, 1—a®) (24)

(e, 1—0%

By now, the DM has gained considerable information on trade-off between various goal
values and the effect of the physical limitations of the problem. The DM is now in a position
to reassess his utility function, if he decides to, and go back to step 6 to continue his seque-
ntial search for a satisfactum. The random variables presented in the algorithm itself are
normal random variables. The algorithm, however, will accomodate any type of random vari-
able, of the continuous or discrete type.

4. Deterministic Equivalents in MSTOT

The general mathematical approach presented here makes use of the change of variable
technique (Lindgren, 1968: Hogg and Craig, 1972) to obtain the distribution of a function of
several random variables with given distributions. Functions of exponential, uniform, and beta
random variables will be considered.

Definition 1.
Consider the inequality

™

i=1

where x; is a mathematical variables, 5 is a constant, and the C; are random variables with
known distributions.
Then, the probability statement.

Prob.(3, C: %<bl>1-a (26)
is denoted a chance-constrained inequality and is realized with a minimum probability of 1 —e,



where 0<a<1.

Definition 2. ;

Let a new random variable y be such that

__y:

e

. Cix; @n

with a cumulative distribution function G(-) for ¥.
Then, the probability statement

Prob. (z Ci xi<bI>1—~a (28)

is realized if and only if

G zl—a (29)
and such inequality is termed a deterministic equivalent of eq(26). Generally, G(8) will be
a nonlinear function of the mathematical variables x;,

When each C; is normally distributed with mean E(C;) and variance Var (C;) and covaria-
nce Cov (C;, C;) between C; and C;. The technique suggested by Charnes and Cooper (1963)
proceeds as follows:

define h=Zn‘, Cixi,

i=1

then % is normally distributed with mean and variance

E(i)=3 E(C) x

Var (B)=X'D;X

respectively, where

X= (%1, %3, -, %n)*

D=covariance matrix

_[Var (€ Cov (C,, Cn)J

“tCov (G Cy) Var (Cn)
Now,

h—Eh)__ b—E(A) }

JVar(h) ~ & Var(i)

A b—E[h)

_‘G{J Var(k) }

where G represents the C.D.F. of a standard normal distribution.
Let K, be the standard normal value such that G(K,)=1—a. Then statement(30) is realized

P(h<b) =P{

30

if and only if

b—E(h)
~ Var(h) “
or >: E(C)X;+ K,y Xt DX <b (30)

Which is the deterministic Equivalent of the original stockastic constraint, The development of
non-normal equivalents is now continued with »=2 only to maintain visibility.



Lemma 1.

Lemma 2.

Let C, and C, be mutually stochastically independent random variables having
uniform distributions with parameters (0, 4,) and (0, 5,) respectively. Also let x,,
%,>0,0<a<]1. Then a deterministic equivalent of the probability statement:

Prob(Cix,+Cox, <d)>1—a @BD
where derange (C,x,+C,x,), is given by the non-linear inequalities.
2(1—a) bibyx,x,—d?<0 (32)
if 0<d<byx,,
2(1—@) byx,+byx,—2d<0, (33)
b2, A< byx,.
2(1— @) b16,%, %5 — 2d (b, x5+ box,) +d2+ (5%, ) 2+ (B3x,) %<0, (34)
b1x, <d<bx+byx,

The proof is given in the Appendix A

Let C, and C, be mutually stochastically independent random variables having
exponential distributions with parameters 4, and A., respectively. Also, consider the
random variable Cix;+C,x,, where x,, x,&R*, and the constant aéR[O, i).

Then, a deterministic equivalent of the probability statement.

Prob (Cyx;+Cox,<b)>1—a, (35)
where dc=range (C,x,+C,x,), is given by the nonlinear inequality

Ax, exp (—A8/%,) — A%, exp (—A;/x) —adx+alx, <0

The proof can be obtained in the Appendix A.

The approach is general enough so that developments similar to the ones above
can be carried out for functions of any number of independent random variables
of the continuous or discrete type, and linear or non-linear in the mathematical
variables x;, but the process may be a lengthy and difficult one.

A weakness of the general approach above is that it is limited to cases where
the random variables can be assumed to be stochastically independent with known
distribution functions. There are many situations, however, where this assumption
may be valid.

In an economic environment, a distributor of, say, energy products, water distt-
ibution may realistically consider the contribution margin for each item type to be
stochastically independent random variables.

A' Deterministic Transformation

This section addresses the case where some or all of the parameters in the objective function
are random variables with known distributions.

Consider the following problem. Let z(c, ¥) be a function of ¢=(¢, ¢, ', ¢n), Where ¢; is a
random variable with distribution f(c;), and ¥= (xy, %5, ***, x,), #>2, such that x;&R**.z(c, %)
is linear in ¢,

Also, let g(¥) represent an m-column vector of functions of ¥. Now, suppose the solution to

the problem

max E(z(c, %)) (36)
s.t. g(®)<0, '



yields the solution x*, Then, the following lemma holds.
Lemma 3,

Given the problem

max z(c, ¥) 37

s.t. g(®) <0,

Flz(¢, ) =0,
where z(¢, ¥) =range [z(c, %)), and F(-) is the cumulative distribution of z(c,¥), there is a
unique a=R(0,1) for which (¢*, #*) is a solution, and z(c*, 2*)=E(z(c,¥*)). The proof is
given in the Appendix A.

An important realization in Lemma 3 is that when random variables are present in the
objective function the problem at hand is one in the realm of distribution theory.

The problem, then, becomes that of finding the distribution of the objective function, itself
a random variable, in the (¢, ¥)-space. The problem formulation in (37) is termed the a-model,
for reference convenience, which can now be solved for different values of a=R(0, 1).

In obtaining the a-model above, we are going from a stochastic, either linear or nonlinear,
n-dimensional model to a deterministic, non-linear, m-dimensional model where #>#xn. We note
that where as in the stochastic formulation the ¢’s are random variables, in the g-model they
become additional mathematical variables constrained by their distribution function.

5. An Illustrative Application

Consider ¢, and ¢, to be exponentially distributed with parameters A,=1/10, A,=1/5. We
would like to know how the new random variable z=c.x;-+c,x, is distributed subject to the
constraints

%2+ x,2 <25, (28)
3x,+x,<12,
Xy, %220,
and for a given value acR(0,1), determine a value z&range (z) such that
Prob. (2527} =a.
Our a-model can now be formulated with the aid of a deterministic transformation (37) previ-
ously stated as follows,
max c¢,x, +c,x, 39
s.t. x2+x,2<25
3x,+x,<12,

21 Az
[ . _Az
Aid, —-‘ ( 2 X ) F XL T ErTabead x2 K CZ“)}

A=A L2, 72 T2 i
1, €220,

X1y szO.

The problem above is nonlinear and nonconvex, as can be verified by generating the Hessian
matrix of the objective function.

Obtaining a solution to this nonconvex problem is not a trivial matter, as none of the class-



ical techniques can be applied directly here. An approximation technique, however, known as
the cutting-plane(Monarchi 1972: Goicoechea, Duckstein and Fogel 1976, a,b) was successfully
implemented in computer program SEARCH (Fig. A4 and Appendix B) to solve for the vector
¢y, ¢z, %,%2,) a8 a was varied parametrically.
The computer results were obtained, and are shown in table 1, and Fig.1. Now, if the
optimization problem is solved using the expected value of the objective function (E-model).
max (¢) -+ E(¢) - 3= 10%, + 5, (40)
s.t. %2+ x,2<25,
3x;+x,<12,
Xy, X2 20,
We obtain the solution x,*=2. 570, x,*=4.289, with an objective function value z=47.145;
to obtain the value associated with this solution we evaluate F(z), yielding

Fig. 1. Cumulative distribution of. the objective function z.
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F(z) =F(47.145) =a’=0. 586
Referring to Fig, 1-we notice that the point (47.145,0.586) is precisely a single point in the
curve obtained solving the @-model problem. The cutting-plane technique used in the solution
involves the variable step of size 0.4 which controls the accuracy and rate of convergence. A
smaller value for step should produce further accuracy in the results.

Table 1. Computer program results.

Range of ¢; and ¢, such

a % X2 that oo = Cuxs=2 Objective function z
0.2 2,234 4.474 (0,11, 126] 24.857
6‘26[0, 5.555]
0.4 2.570  4.289 ¢:€[0, 14. 833] 38.122
c2<[0, 8.888]
0.6 2.570 4.289 <00, 20.084] 51.616
¢:<[0, 12.034]
0.8 2.570 4.289 ¢,=[0, 28.478] 73.190

.0, 17.064]

6. Discussion and Conclusions

It has been shown that it is possible to deal effectively with random variables in the set of
constraints and objective function of a stochastic programming problem. When the random
variables appear in the set of constraints, deterministic equivalents can now be derived to
replace tne original chance-constrained inequality. Thus, the applicability of the multi-objective
algorithm MSTOT, is enhanced and extended to a larger, more realistic, variety of problems
in water resources management.

When the random variables appear in the objective function the a-model has been structured
so that the range of values of the random variable involved is taken into account in the cons-
traint set by means of the cumulative distribution function for those variables, evaluated at a
value of a=R(0,1). The same concept can be used to deal with probability statements and
random variables in the constraint set.

It is important to realize that solution of the stochastic programming problem via an a¢-model
provides all the information that the decision maker would want to extract from such proble-
ms, e.g., it completely specifies the magnitude of the objective function as it varies with a,
the probability of achievement.

The deterministic equivalents presented in chapter 4 represent exact developments. The
change of variable technique used in chapter 4 allows the formulation of exact deterministic
equivalents for random variables with any type of probability density function (Goicoechea
1977) thus enhancing the applicability of MSTOT.

It was shown in chapter 4 that it is possible to deal effectively with random variables in
the objective function by transforming the original stochastic programming problem into an
equivalent deterministic problem.



This new problem formulation, labeled an a-model, allows an analytic, closed-form solution
to the stochastic problem whose objective function had been solved previously via simulation.
The dimensionality of the problem is increased (generally doubled), and one may go from a
linear problem to a nonlinear, nonconvex problem.
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APPENDIX A

Lemma 4. Let ¢, and ¢, be mutually stochastically independent random variables having
uniform distributions with parameters (0,5,) and (0, 5,), respectively. Also let x,, x,>>0. Then
the new random variable y=¢x, +¢,x, is distributed as follows:
g =y/b1box1%5, 0<Ly<box, (AD
=1/b1x1, bax, <y<bix,

— blxl +b2.762—y
biby %1%,

bix; <y <bixi+ by,
=0, otherwise.
Proof: The joint distribution of ¢, and ¢, is given by

f (ene)= (%2‘) (—bl“z_) for (¢, )&

A={(e, e): 0<ei<by, i=1,2) (A2)
=(, otherwise;
now, the transformation y,=cx,+¢x, 3.=c, maps the set A into the set B defined as follows
B={(y1,5:):0<9,<b;, 5:<1/%2 0<y:1<%,014+ %535}, (A3)
as shown in Figures 1 and 2 below,

Ce

Cz=b:

C‘=b1

Fig. A1. The set A in the C~C plane.



Ya= Y1 /%2

Y2 =b: \

i

Yo
Xz

A

X1
_b]
X2

bl)zl + byx2

1

bzX?

©, 0)

b1X|

bix»

Fig. A2. The set B in the y,—y. plane.

The jont distribution of y, and y, is then, given by

£(91,55) =‘bTbl;cT' for (y.,5,)EB

=(, otherwise,
and finally, the pdf g(y,),
¥1/%;
gy =JO gLy dy,
0<y<byx,
g() =51/b.byx:%,,

_Jbz 1 4
- 0 b]_ble Ve

=1/b1%;, byx, <3, < by, =J

*z

bz
-3

_ buxybpxs =y
b1bax1xy
byx <91 <bix +byx,
=(, otherwise;

1

____d ,
yi_ = bibyx, Y2

b4

(A9

(A5)

whenever b,x,>b,x,, the definition of g(y,) above can be modified accordingly.

Lemma 5.

uniform distribution with parameters (0,5,) and (0, 4,), respectively
<1. Then, a deterministic equivalent of the probability statement

Prob (cx,+c¢x,<d)}>1—a

where derange (c,x,+c.x,), is given by the non-linear inequalities

2(0—a) bibyxyx,—d?

if 0<d<b,x,,

2(1—a) byx,+b,x,—24

byx, <d<byx,,

2(1—a) biboxyx,—2d(b %+ byx) +
d2 4 (byx)? + (boxn)®

by <d<byx;+ by,

<

<

<

0,

0,

0,

Proof: From Lemma 1 the distribution g(») of the random variable

Let ¢, and ¢, be mutually stochastically independent random variables having

. Also let x, x,>0, 0<a-

(A6)

y=cx,+Cx, IS given by



(31), (32) and (34). The cumulative distribution G(y) is then given as follows,

G =] 552—ay, (A7)

0 b1byx1%,

2

_ Yy
= Shibi,  VSYS b

0 1 (byx5)*
—Jbzzz blxl dy + Zblbg.leCg ’

2y—b
z—j.,zb‘lxilxz*, box, <y < b1y

_ ’ (b1%:+ byxs) —y 261%,— byx,
—Jfb,zl b1bsx %, dy + 2b,x,

= 25‘5:;(1,52 200121+ bpx)y — 92— (B121) 2~ (by,)?)

for byx, <y<bix;+byx,,
then, thg probability statement

Prob (¢4 ¢x,<d)>1—a (A8)
is realized if and only if G(d)>1—a, or

2(1—a) biboxix,—d?<0, 0<d<byx,

2(0—a) bix;+bx,—2d<0, byx, <d<bhix;

2(1—a) blblexz—zd(b1x1+bzx2)+d2+(51701)2+(bzx2)2‘£0,

b <Ad<bxy+ box,,

APPENDIX B

A CUTTING-PLANE TECHNIQUE

As shown in Chapters 5 and 6 the reduction of a stochastic problem to a deterministic
equivalent results in added complexity and, generally, the problem cannot be solved by appl-
ying the simplex or dual simplex methods (Dantzig 1963; Luenberger 1973) alone. A nonlinear
technique due to Kelly (1960) known as a cutting-plane method was used to effectively solve
the nonlinear problem.

Two computer routines have been developed at least (Griffith and Stewart 1960; Monarchi
et al. 1973) with some experience detailed. More recent activity (Goicoechea, Duckstein and
Fogel 1976a,b) presents a modified version of the method to avoid cycling and speed-up conv-
ergence to a solution. Essentially, this method replaces the original constraint set by a set of
half spaces. These half spaces are updated progressively to “cut away” portions of the new
constraint set. In the process, linear programming is applied to iteratively arrive at a solution
in the original feasible region.

Mathematically the nonlinear problem may be stated as follows:

n
max G=3% cx;+h (1, 9207+, 90)

i=1

subject to

M

i+ &Y, Yo o V)b, 1=1,2, 4, m

j=1



L,<y,<U,, p=1,2,k

*;=0 j=1,2,m.
The problem may now be linearized in the region about the point x;=0, y;=py:;" by expansion
as a Taylor’s series and ignoring terms or order higher than one. The linearized form is,
Maximize (or minimize):

F 0 0 e ;0
g1 (3,% 32 95" (3, —9,%)

n k
G=% cxj+&i(3,y0 - md+ X
= =

0y,
subject to:
n ko 0g:(5:° 9% 0 9D
3 ay gt vt )+ L oy (¥, =9 =b;
& =
Lp_yposyr"‘ypoSUp"ypo, =1,2,k
and %20, Ji=1,2,n
also, the restriction
Ay + A7y <my

is added to control the convergence rate with step size m;.

X

ke

Xy

Fig. A3. Cutting plane method.
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No solution
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Fig. A4. Program SEARCH, the optimization algorithm.



If Ay,-:y,-—y,-", then 4+ ,~=Ay,~ when A,ZO and
A'y,- =— Ay,- when Ay,- =0.

The linearization procedure and optimization algorithm are illustrated in Figures A—1 and
A—2, respectively. A numercial example is also presented for illustrative purposes.
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