• 제목/요약/키워드: Multi-Objective Optimization approach

검색결과 167건 처리시간 0.026초

피로수명예측을 위한 반응표면근사화와 절충의사결정문제의 응용 (Response Surface Approximation for Fatigue Life Prediction and Its Application to Compromise Decision Support Problem)

  • 백석흠;조석수;장득열;주원식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1187-1192
    • /
    • 2008
  • In this paper, a versatile multi-objective optimization concept for fatigue life prediction is introduced. Multi-objective decision making in engineering design refers to obtaining a preferred optimal solution in the context of conflicting design objectives. Compromise decision support problems are used to model engineering decisions involving multiple trade-offs. These methods typically rely on a summation of weighted attributes to accomplish trade-offs among competing objectives. This paper gives an interpretation of the decision parameters as governing both the relative importance of the attributes and the degree of compensation between them. The approach utilizes a response surface model, the compromise decision support problem, which is a multi-objective formulation based on goal programming. Examples illustrate the concepts and demonstrate their applicability.

  • PDF

A New Reliability-Based Optimal Design Algorithm of Electromagnetic Problems with Uncertain Variables: Multi-objective Approach

  • Ren, Ziyan;Peng, Baoyang;Liu, Yang;Zhao, Guoxin;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.704-710
    • /
    • 2018
  • For the optimal design of electromagnetic device involving uncertainties in design variables, this paper proposes a new reliability-based optimal design algorithm for multiple constraints problems. Through optimizing the nominal objective function and maximizing the minimum reliability, a set of global optimal reliable solutions representing different reliability levels are obtained by the multi-objective particle swarm optimization algorithm. Applying the sensitivity-assisted Monte Carlo simulation method, the numerical efficiency of optimization procedure is guaranteed. The proposed reliability-based algorithm supplying multi-reliable solutions is investigated through applications to analytic examples and the optimal design of two electromagnetic problems.

다목적 시뮬레이션 통합 하이브리드 유전자 알고리즘을 사용한 수동 조립라인의 동기 작업 모델 (A Synchronized Job Assignment Model for Manual Assembly Lines Using Multi-Objective Simulation Integrated Hybrid Genetic Algorithm (MO-SHGA))

  • 무하마드 임란;강창욱
    • 산업경영시스템학회지
    • /
    • 제40권4호
    • /
    • pp.211-220
    • /
    • 2017
  • The application of the theoretical model to real assembly lines has been one of the biggest challenges for researchers and industrial engineers. There should be some realistic approach to achieve the conflicting objectives on real systems. Therefore, in this paper, a model is developed to synchronize a real system (A discrete event simulation model) with a theoretical model (An optimization model). This synchronization will enable the realistic optimization of systems. A job assignment model of the assembly line is formulated for the evaluation of proposed realistic optimization to achieve multiple conflicting objectives. The objectives, fluctuation in cycle time, throughput, labor cost, energy cost, teamwork and deviation in the skill level of operators have been modeled mathematically. To solve the formulated mathematical model, a multi-objective simulation integrated hybrid genetic algorithm (MO-SHGA) is proposed. In MO-SHGA each individual in each population acts as an input scenario of simulation. Also, it is very difficult to assign weights to the objective function in the traditional multi-objective GA because of pareto fronts. Therefore, we have proposed a probabilistic based linearization and multi-objective to single objective conversion method at population evolution phase. The performance of MO-SHGA is evaluated with the standard multi-objective genetic algorithm (MO-GA) with both deterministic and stochastic data settings. A case study of the goalkeeping gloves assembly line is also presented as a numerical example which is solved using MO-SHGA and MO-GA. The proposed research is useful for the development of synchronized human based assembly lines for real time monitoring, optimization, and control.

Response surface methodology based multi-objective optimization of tuned mass damper for jacket supported offshore wind turbine

  • Rahman, Mohammad S.;Islam, Mohammad S.;Do, Jeongyun;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.303-315
    • /
    • 2017
  • This paper presents a review on getting a Weighted Multi-Objective Optimization (WMO) of Tuned Mass Damper (TMD) parameters based on Response Surface Methodology (RSM) coupled central composite design and Weighted Desirability Function (WDF) to attenuate the earthquake vibration of a jacket supported Offshore Wind Turbine (OWT). To optimize the parameters (stiffness and damping coefficient) of damper, the frequency ratio and damping ratio were considered as a design variable and the top displacement and frequency response were considered as objective functions. The optimization has been carried out under only El Centro earthquake results and after obtained the optimal parameters, more two earthquakes (California and Northridge) has been performed to investigate the performance of optimal damper. The obtained results also compared with the different conventional TMD's designed by Den Hartog's, Sadek et al.'s and Warburton's method. From the results, it was found that the optimal TMD based on RSM shows better response than the conventional damper. It is concluded that the proposed response model offers an efficient approach regarding the TMD optimization.

다목적 Error Correcting Code의 새로운 설계방법 (A New Approach to Multi-objective Error Correcting Code Design Method)

  • 이희성;김은태
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.611-616
    • /
    • 2008
  • Error correcting codes는 일반적으로 soft error를 막기 위해서 사용된다. single error의 수정과 double error의 검출(SEC-DED) 코드들은 이런 목적으로 사용된다. 본 논문에서는 이러한 회로의 크기, 지연시간, 전력 소비를 선택적으로 최소로 하는 SEC-DED의 설계방법을 제안한다. 이러한 SEC-DED의 설계는 비선형 최적화 문제로 포함되는데 우리는 다목적 유전자 알고리즘을 이용하여 이 문제를 해결한다. 제안하는 방법은 여러 가지 SEC-DED code들을 제공하여 사용자의 환경에 따라 알맞은 회로를 선택할 수 있도록 한다. 제안하는 방법을 효율적인 ECC코드로 알려져 있는 odd-column weight Hsiao code에 적용하여 그 효율성을 입증하였다.

Robust multi-objective optimization of STMD device to mitigate buildings vibrations

  • Pourzeynali, Saeid;Salimi, Shide;Yousefisefat, Meysam;Kalesar, Houshyar Eimani
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.347-369
    • /
    • 2016
  • The main objective of this paper is the robust multi-objective optimization design of semi-active tuned mass damper (STMD) system using genetic algorithms and fuzzy logic. For optimal design of this system, it is required that the uncertainties which may exist in the system be taken into account. This consideration is performed through the robust design optimization (RDO) procedure. To evaluate the optimal values of the design parameters, three non-commensurable objective functions namely: normalized values of the maximum displacement, velocity, and acceleration of each story level are considered to minimize simultaneously. For this purpose, a fast and elitist non-dominated sorting genetic algorithm (NSGA-II) approach is used to find a set of Pareto-optimal solutions. The torsional effects due to irregularities of the building and/or unsymmetrical placements of the dampers are taken into account through the 3-D modeling of the building. Finally, the comparison of the results shows that the probabilistic robust STMD system is capable of providing a reduction of about 52%, 42.5%, and 37.24% on the maximum displacement, velocity, and acceleration of the building top story, respectively.

An Efficient PSO Algorithm for Finding Pareto-Frontier in Multi-Objective Job Shop Scheduling Problems

  • Wisittipanich, Warisa;Kachitvichyanukul, Voratas
    • Industrial Engineering and Management Systems
    • /
    • 제12권2호
    • /
    • pp.151-160
    • /
    • 2013
  • In the past decades, several algorithms based on evolutionary approaches have been proposed for solving job shop scheduling problems (JSP), which is well-known as one of the most difficult combinatorial optimization problems. Most of them have concentrated on finding optimal solutions of a single objective, i.e., makespan, or total weighted tardiness. However, real-world scheduling problems generally involve multiple objectives which must be considered simultaneously. This paper proposes an efficient particle swarm optimization based approach to find a Pareto front for multi-objective JSP. The objective is to simultaneously minimize makespan and total tardiness of jobs. The proposed algorithm employs an Elite group to store the updated non-dominated solutions found by the whole swarm and utilizes those solutions as the guidance for particle movement. A single swarm with a mixture of four groups of particles with different movement strategies is adopted to search for Pareto solutions. The performance of the proposed method is evaluated on a set of benchmark problems and compared with the results from the existing algorithms. The experimental results demonstrate that the proposed algorithm is capable of providing a set of diverse and high-quality non-dominated solutions.

인접한 쌍둥이 구조물의 진동제어를 위한 점성 감쇠기의 다목적 최적 분포 (Multi-Objective Optimal Distributions of Viscous Dampers for Vibration Control of Adjacent Twin Structures)

  • 류선호;옥승용
    • 한국안전학회지
    • /
    • 제33권2호
    • /
    • pp.61-67
    • /
    • 2018
  • This study proposes a new vibration control approach for adjacent twin structures, which is termed as viscous damper asymmetric coupling system in this paper. The proposed system takes a concept that the diagonal bracing viscous dampers are asymmetrically distributed in two buildings to break the behavior symmetry of the twin buildings and then the coupling viscous damper is additionally installed at the top floor of the two buildings to couple both buildings and interactively transfer the asymmetric behavior-caused damping forces into both buildings. These asymmetric damping distributions and interacting damping forces of the connection damper efficiently suppress the overall vibration of the damper-coupled adjacent twin buildings efficiently. Genetic algorithm (GA) based multi-objective optimization technique is adopted for optimal design of the proposed system. In the numerical example of adjacent twin 10-story building structures, the conventional control approach, that is, uniform damping distribution system (UDS) is also taken into account for comparison purpose. The optimization results verify that the proposed system either can improve the control performance over the UDS with the same damping capacity, or can save the damping capacity significantly while maintaining the similar level of control performance to the UDS.

Practical Optimization Methods for Finding Best Recycling Pathways of Plastic Materials

  • Song, Hyun-Seob;Hyun, Jae Chun
    • 청정기술
    • /
    • 제7권2호
    • /
    • pp.99-107
    • /
    • 2001
  • Optimization methodologies have been proposed of find the best environment-friendly recycling pathways of plastic materials based on life-cycle assessment (LCA) methodology. The main difficulty in conducting this optimization study is that multiple environmental burdens have to be considered simultaneously as the cost functions. Instead of generating conservative Pareto or noninferior solutions following multi-objective optimization approaches, we have proposed some practical criteria on how to combine the different environmental burdens into a single measure. The obtained single objective optimization problem can then be solved by conventional nonlinear programming techniques or, more effectively, by a tree search method based on decision flows. The latter method reduces multi-dimensional optimization problems to a set of one-dimensional problems in series. It is expected the suggested tree search approach can be applied to many LCA studies as a new promising optimization tool.

  • PDF

네트워크 특징에 따른 수질-수리 제약조건 기반 상수도관망 다목적 최적 설계 기술개발 (Development of multi-objective optimal design approach for water distribution systems based on water quality-hydraulic constraints according to network characteristic)

  • 고문진;최영환
    • 한국수자원학회논문집
    • /
    • 제55권1호
    • /
    • pp.59-70
    • /
    • 2022
  • 상수도관망은 대표적인 사회기반시설로 수원에서 수용가에게 물을 공급하는 과정에서 병원성 미생물을 소독하기 위해 염소를 주입한다. 안전한 물의 공급을 위해 잔류염소 농도 기준(0.1-4.0 mg/L)을 유지하도록 규정하고 있으나, 사용자의 사용 패턴, 수령, 상수도관망의 형식 및 특징은 수리학적(i.e., 절점의 압력, 관로의 유속) 및 수질적(i.e., 잔류염소 농도) 특징에 영향을 미친다. 따라서, 본 연구에서는 Multi-objective Harmony Search (MOHS)를 사용하여 수질-수리 인자를 고려한 상수도관망 최적 설계 기법을 개발하였다. 설계인자로는 설계비용과 시스템 탄력성을 고려하였으며, 절점의 압력과 잔류염소 농도를 제약조건으로 적용하였다. 도출된 최적설계안은 상수도관망의 형식 및 특징에 따라 분석하였다. 이러한 최적설계안은 경제적인 측면과 수질 측면의 안전성을 충족할 수 있으며, 사용자의 사용성을 증가시킬 수 있다.